Курсова робота
З дисципліни:
“Технологічні основи машинобудування”
Виконав: студент групи АГ - 04
Перевірив: викладач, доцент
2005 р.
ВВЕДЕНИЕ
Совокупность методов и приемов изготовления машин, выработанных в течении длительного времени и используемых в определенной области. Поэтому возникают такие понятия: технология обработки давлением, литья, сварки, сборки машин. Все эти области производства относятся к технологии машиностроения охватывающей все этапы процесса изготовления машинной продукции.
Однако под “технологией машиностроения” принято понимать научную дисциплину, изучающую процессы металлической обработки деталей и сборки машин и попутно затрачивающую вопросы выбора заготовки и методы их изготовления. В процессе технической обработки деталей машин возникает большое количество простейших вопросов, связанных с необходимостью выполнения технических требований, поставленными конструкторами перед изготовителями.
Эти обстоятельства объясняет развитие “технологии машиностроения“ как научной дисциплиной в первую очередь в направлении изучения вопросов технологии металлической обработки и сборки, в наибольшей мере влияющие на производственную деятельность предприятия.
В данной курсовой работе подробно изложена технология изготовления вала с подборкой оборудования, режущего инструмента. Учтены нормы времени на обработку.
1. РАЗРАБОТКА ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ОБРАБОТКИ ВАЛА
1.1 Анализ технологичности конструкции детали.
Тип производства определяют по формуле, рассчитывая такт выпуска:
где Fg=2100 ч – действительный фонд времени работы станка в одну смену;
m=2 – количество смен;
N=400 шт – годовое производство деталей.
Если такт выпуска получился больше 60, то применяется индивидуальное производство.
1.3 Определение количества деталей в партии
штгде N=400 шт – годовой выпуск деталей;
D=256 дн – действительное количество рабочих дней в году;
t=10 дн – количество дней в году на которые должен быть обеспечен запас на складе.
1.4 Выбор и экономическое обоснование способов получения
заготовки
Заготовка получена путем проката на прокатном стане и имеет в сечении форму круга. Необходимая нам деталь так же имеет форму круга в сечении, а соответственно более удобна для обработки с экономической и технологи-ческой точки зрения.
1.5 Выбор технологических баз и разработка маршрутной
технологии
Для черновой операции принимаем технологическую базу – наружная цилиндрическая поверхность заготовки.
Для последующих чистовых операций принимаем базу – центровое отверстие.
Припуск на длину для диаметра прутка 70 мм равен 5 мм на сторону.
Маршрутная технология и исходные данные для разработки технологи-ческого процесса механической обработки вала приведены в таблице 1.
2. ВЫБОР ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ, ПРИСПОСОБЛЕНИЙ, РЕЖУЩЕГО И МЕРИТЕЛЬНОГО ИНСТРУМЕНТА
2.1 Токарная обработка
Оборудование: токарно-винторезный станок 16К20, мощность двигателя Nдв=11 кВт.
Приспособления: токарный самоцентрирующийся патрон, предохранительный сверлильный патрон, рифленый передний центр, вращающийся задний центр.
Режущий и мерительный инструмент: токарный подрезной резец Т15К6, центровочное сверло, спиральное сверло Ø 10.2 мм, метчик М12, фасочный резец (правый и левый), линейка металлическая, штангенциркуль ШЦ-1.
2.2 Фрезерная обработка
Оборудование: вертикально-фрезерный станок 6Р11, мощность двигателя Nдв=5,5 кВт.
Приспособления: подвижные призмы, прихваты. Режущий и мерительный инструмент: шпоночная фреза Ø16мм, штангенциркуль ШЦ-1.
2.3 Шлифовальная обработка
Оборудование: круглошлифовальный станок 3М150, мощность двигателя Nдв=4.0 кВт. Приспособления: трехкулачковый патрон, передний и задний центра.
Режущий и мерительный инструмент: шлифовальный круг Ø400х50х16 мм, микрометр 50-75.
3. УСТАНОВЛЕНИЕ РЕЖИМОВ РЕЗАНИЯ
3.1 Токарная операция
На токарной операции расчет режимов резания производится на 3-х переходах:
1. Подрезать торец
5. Сверлить отверстие
6. Нарезать резьбу
Установка А переход 1 подрезать торец.
Скорость резания определяется по формуле:
где Т=60 мин – среднее значение периода стойкости резца;
t=5 мм – глубина резания;
S=0.5 мм/об – подача при точении (табл. 11)
Из таблицы 17 находим значение коэффициента Сv и показателей степеней:
Сv=350; x=0.15; y=0.35; m=0.20
Kv=Kmv∙Kuv∙Knv,
где Kmv – поправочный коэффициент, учитывающий качество обрабатываемо-
го материала;
Kuv=1.0 – коэффициент, учитывающий качество материала инструмента
(табл. 6);
Knv=0.9 – коэффициент, отражающий состояние поверхности заготовки
(табл. 5).
где Kr=1.1 – коэффициент, характеризующий группу стали по обрабатывае-
мости (табл. 2);
nv=1.0 – показатель степени (табл. 2);
σв=900 МПа – временное сопротивление материала ст. 40Х.
м/минОпределение частоты вращения:
об/мингде D=70 мм – диаметр обрабатываемой поверхности.
Для станка 16К20 частоту вращения шпинделя определяем по табл. 9: nmin=12.5; nmax=1600.
Диаметрический ряд скоростей:
где z=22 – число скоростей шпинделя
nф=500 об/мин
Определение фактической скорости резания:
м/минРасчет режимов резания при сверлении отверстия Ø10.2 мм под резьбу М12.
Определение скорости резания при сверлении определяется по формуле:
,где Т=25 мин – среднее значение периода стойкости сверла (табл. 30);
S=0.28 мм/об – подача при сверлении (табл. 28);
Kls=0.9, Kоs=0.5 – поправочные коэффициенты учитывающие конкретные
условия обработки
D=10.2 мм – диаметр сверла;
Из таблицы 28 определяем значение коэффициента Cv и показателей степени:
Cv=9.8; q=0.40; y=0.30; m=0.20
Kv=Kmv∙Kuv∙Klv,
где Kmv – коэффициент на обрабатываемый материал;
Kuv=1.0 – коэффициент на инструментальный материал;
Klv=0,85 – коэффициент, учитывающий глубину сверления (табл. 31).
где Kr=1.0 – коэффициент, характеризующий группу стали по обрабатывае-
мости (табл. 2);
σв=900 МПа – временное сопротивление материала ст. 40Х.
nv=0.9 – показатель степени.
;Kv=0.721∙1.0∙1.0=0.721
м/минОпределение частоты вращения шпинделя:
об/минВыбираем фактическую частоту вращения по станку ближайшую меньшую:
nф=400 об/мин
Определение фактической скорости резания при сверлении:
м/минОпределение режимов резания при нарезании резьбы М12.
Метчик работает с самозатягиванием, поэтому подача равна шагу резьбы (S=1.5 мм/об)
,где Т=90 мин – среднее значение периода стойкости метчика (табл. 49);
D=12 мм – диаметр;
S=1.5 мм/об – подача.
Из таблицы 49 определяем значение коэффициента Cv и показателей степени:
Cv=64.8; y=0.5; q=1.2; m=0.90.
Kv=Kmv∙Kuv∙Кtv,
где Kmv=0.8 – коэффициент, учитывающий качество обрабатываемого мате-
риала (табл. 50);
Kuv=1.0 – коэффициент, учитывающий материал режущей части инстру-
мента (табл. 50);
Кtv=1.0 – коэффициент, учитывающий точность нарезаемой резьбы
(табл. 50).
Kv=0.8∙1.0∙1.0=0.8
м/мин