Смекни!
smekni.com

Технология получения масел и парафинов (стр. 3 из 4)

Зона наибольшей температуры в системе экстракции находится в месте ввода в систему растворителя, наименьшей – на выходе экстрактного раствора, т.е. существует неравенство: температура ввода растворителя > температура вывода рафинатного раствора > температура ввода сырья > температура вывода экстрактного раствора. При соприкосновении более холодного экстрактного раствора с более горячим рафинатным раствором между ними происходит обмен тепла, что нарушает существующее между ними ранее равновесие и усиливает переход компонентов из одного раствора в другой. Вследствие меньшей растворимости в первую очередь из экстрактного раствора выделяются желательные компоненты.

Выделение компонентов (рециркулята) из экстрактного раствора в результате межфазового обмена – один из важных факторов повышения эффективности очистки нефтяного сырья избирательными растворителями. Чем больше температурный градиент экстракции, тем больше рециркулята образуется в процессе экстракции, однако при чрезмерном увеличении температурного градиента нарушается нормальная работа экстракционной системы, Выделение рециркулята способствует снижению потерь ценных компонентов с экстрактным раствором и, следовательно, увеличению выхода рафината. Вовлечение желательных компонентов в экстрактную фазу обусловлено в первую очередь растворяющей способностью растворителя. Растворитель с высокой растворяющей способностью увлекает в экстрактный раствор больше ценных компонентов, очищаемого сырья, чем растворитель с низкими растворяющими свойствами. При очистке фенолом, имеющим относительно высокую растворяющую способность, потери ценных компонентов несколько выше, чем при очистке фурфуролом. На некоторых установках из экстрактного раствора получают вторичный рафинат с увлеченными желательными компонентами масла. По качеству вторичный рафинат отличается от рафината, выходящего из системы очистки. Поэтому после выделения из экстрактного раствора этот рафинат смешивают с исходным очищаемым сырьем для повышения содержания в нем ценных компонентов или выводят из системы как самостоятельный продукт процесса. Оптимальные условия селективной очистки пока выбирают экспериментально, но уже ведутся работы по применению научных методов оптимизации промышленных процессов, что позволяет получить надежные данные и сократить сроки экспериментов.

1.6. ОБОСНОВАНИЕ ВЫБОРА ТЕХНОЛОГИЧЕСКОЙ СХЕМЫ И ЕЕ ОПИСАНИЕ

При использовании выбранной технологической схемы выполняются следующие основные требования:

Высокий выход рафината с высоким индексом вязкости;

Простота и компактность установки;

Гибкость технологической схемы, обеспечивающего переработку сырья различного качества;

Максимальная утилизация тепла;

Предотвращение загрязнения окружающей среды.

2. ТЕХНОЛОГИЧЕСКИЙ РАСЧЕТ УСТАНОВКИ

2.1. РАСЧЕТ ЭКСТРАЦИОННОЙ КОЛОННЫ

Производительность установки = 430000 тонн в год = 52696,1 кг/ч

Время работы за год = 8000 часов ρ20 сырья = 0,8918

Кратность сырье: фенол = 1: 2 по массе

Материальный баланс. Таблица 3.

Взято Массовыхчастей: % масс. От смеси Кг/ч
Сырье 100,0 32,26 52696,1
Фенол 200,0 64,52 105392,2
Фенольнаявода: 7,0 3,22 3688,72
Фенол 0,6 0,32 316,18
Вода 6,4 2,9 3372,55
Итого: 307,0 100,0 161776,96
Получено:
Рафинатныйраствор: 92,0 100 48085,27
Рафинат 73,0 80,0 38468,14
Фенол 18,0 20,0 9617,03
Экстрактныйраствор: 215,0 100,0 113691,69
Экстракт 27,0 13,11 14227,96
Фенол 180,0 82,82 95221,87
Вода 8,0 4,07 4242,03
Итого: 307,0 161776,96

Тепловой баланс. Таблица 4.

Поступает: G, кг/ч ρ20, кг/м^3 T, С q, кДж/кг Q, кДж/ч
Сырье 52696,1 0,8918 55 105,2 5543629,72
Фенол 105392,2 1,071 78 145,8 15366182,76
Фенольнаявода:
Фенол 316,17 1,0171 50 92,3 29183,04
Вода 3372,55 1,0000 50 92,3 311286,36
Итого: 161776,96 21250281,88
Выходит:
Рафинатныйраствор: 0,9033 70
Рафинат 38468,14 0,8693 70 137,3 5281675,62
Фенол 9617,03 1,017 70 130,3 1253099,01
Экстрактныйраствор: 55
Экстракт 14227,94 0,9189 55 102,4 1456941,05
Фенол 95221,87 1,071 55 99,8 9503142,63
Вода 4242,03 1,000 55 99,8 423354,59
ЦиркуляционноеОрошение 3332068,98
Итого: 161776,96 17918212,9

Циркуляционное орошение = Qпр - Qух = 3332068,98 кДж/ч

Расчет конструктивных параметров экстракционной колонны

Gр + Gф ρраф. р-ра = - --------------------- - = 903,3 кг/м^3

Gр/ρр + Gф/ρф Gр + Gф + Gэ

ρэкстр. р-ра = - --------------------- - = 952,6 кг/м^3

Gр/ρр + Gф/ρф + Gэ/ ρэ

где Gр и ρр – расход и плотность рафината;

Gэ и ρэ – расход и плотность экстрака;

Gф и ρф – расход и плотность фенола;

Gв и ρв – расход и плотность воды.

Vраф. р-ра = 53,23 м^3/ч

Vэкстр. р-ра = 119,35 м^3/ч

Vсмеси = Vраф. р-ра + Vэкстр. р-ра = 172,58 м^3/ч

Примем скорость движения потоков W = 10м^3/м^2, тогда площадь сечения колонны:

Vсмеси

F = - ---------------- - = 17,268 м^3

W

Определяем диаметр колонны:

D = √4*F/π = 4,68 м, примем D = 4,7м и число тарелок n = 20

Высота колонны складывается из:

высоты верхнего днища h1 = 0.2*D =0,94 м

высоты зоны отстоя раствора рафината h2 = Vраф. р-ра/ F = 3,08 м

высоты контактной зоны h3 = 0,5*(n – 1) = 9,5 м

высоты зоны отстоя раствора экстракта h4 = Vэкстр. р-ра/ F = 6,9 м

высоты мантии h5 = 1 м

H = h1 + h2 + h3 + h4 + h5 = 21,42 м

2.2. РАСЧЕТ СУШИЛЬНОЙ КОЛОННЫ БЛОКА РЕГЕНЕРАЦИИ ЭКСТРАКТНОГО РАСТВОРА

В колонне происходит отгон воды, содержащийся в экстрактном растворе.

Материальный баланс колонны. Таблица 5

Взято

% масс.

От смеси

Кг/ч

Экстрактный

раствор:

100,0 113693,84
Экстракт 13,11 14227,94
Вода 4,07 4242,03

Фенол

82,82

95221,97
Получено:

1. Азеотропная

смесь:

100,0 5116,22
Фенол 9,0 460,46
Вода 91,0 4655,76
2. Остаток: 100,0 108577,62
Экстракт 7,28 7904,45
Фенол 92,72 100673,17

1. С верхней части колонны выходит азеотропная смесь, которая имеет следующий состав:

Фенол 9% масс.

Вода 91% масс.

Ткип = 98 С при давлении Р = 101 кПа

Следовательно параметры верхней части колонны: Тв =98 С; Рв = 101 кПа

2. Давление внизу колонны зависит от количества тарелок в колонне.

Примем n = 24 и перепад давления на каждой тарелке ∆р = 2,5 кПа, тогда

Рн = Рв + ∆р*n = 161 кПа

3. Температура низа колонны Мэкст = 377,8 г/моль, Мф = 94 г/моль

nф = w/М = 92,72/94 = 0,981

nэкстр = w/М = 7,28/377,8 = 0,019

N = nф + nэкстр = 0.981 + 0.019 = 1,0

χ’ф = nф/N = 0,981

χ’экстр = nэкстр/N = 0,019

Рн = рф* χ’ф + рэкстр* χ’экстр

Так как экстракт очень тяжелый, то будем считать, что он не испаряется и поэтому считаем рэкстр ≈ 0.

Рн = рф* χ’ф = 161 кПа, зная χ’ф находим рф = 164 кПа

Этому давлению насыщенного пара фенола соответствует t = 200С

Тепловой баланс Таблица 4

Поступает: G, кг/ч ρ20, кг/м^3 T, С q, кДж/кг Q, кДж/ч
Экстракт 14227,94 0,9189 130 258,8 3682190,87
Вода 4242,03 1,00 130 262,3 1112684,47
Фенол 35221,87 3,071 130 262,3 24976696,5
Хол. орошение 1087,5 50 102,66 111642,75
Цирк. орошение 24905453,21
Итого: 29883214,59
Выходит:
1. Азеотропнаясмесь:
Вода 4655,76 1,0 98 185,7 864574,63
Фенол 460,46 1,071 98 185,7 85507,422
2. Остаток:
Экстракт 7904,45 0,9189 200 258,8 2045671,66
Фенол 10673,17 1,071 200 195,7 1982007,67
Итого: 4977761,38

* - при 15С

** - плотность паров.

Циркуляционное орошение = Qпр - Qух = 84905453,21 кДж/ч

Диаметр колонны D=4 м

Высота колонны Н складывается из высоты:

высоты верхнего днища h1 = 0,2*D =0,8 м

высоты рабочей зоны h2 = 0,5*(n – 1) = 11,5 м

высоты нижнего днища h3 = 0,2*D = 0,8 м

H = h1 + h2 + h3 = 12,14 м

2.3. РАСЧЕТ ТЕПЛООБМЕННИКА

Теплообменник нагрева сырья экстрактом, выходящим из экстрактной отпарной колонны 22 (см. схему), имеющим tн2 = 300С. Температура сырья на входе в теплообменник tн1 = 25С, а на выходе tк1 = 90С

Плотность сырья ρ15 =0,931 Плотность экстракта ρ15 =0,9569

Энтальпия сырья при температуре выхода из теплообменника qк1 =174,0 кДж/кг

Энтальпия сырья при температуре ввода в теплообменник qн1 = 57,2 кДж/кг

Энтальпия экстракта при температуре ввода в теплообменник qн2= 675,9 кДж/кг

Найдем температуру экстракта на выходе из теплообменника tк2:

Q = Gэ*(qн2 – qк2) = Gс*(qк1 – qн1)

Gс = 52696,1 кг/ч Gэ = 14227,94 кг/ч

14227,94*(675,9 - qк2) = 52696,1*(1740,0 - 57,2)

Решив это уравнение находим энтальпию потока экстракта на выходе из теплообменника qк2 = 243,31 кДж/кг и соответствующая ей tк2 = 128С

Средний перепад температур:

300С → 118С ∆tб = 210С

90С ← 25С ∆tм = 109С

Отношение ∆tб/∆tм = 210/109 = 1,9 < 2, значит

∆tб + ∆tм

τср = - ------------------ - = 159,5С