Кроме того, повышенная активность модифицированных катализаторов может быть связана с пассивацией RalCl2, который по реакционной способности при восстановлении TiCl4 в b-TiCl3 значительно уступает триалкилалюминию и диалкилалюминий-хлориду.
Оптимальным соотношением компонентов в модифицированной каталитическом комплексе является триизобутилалюминий: дифенилоксид:
тетрахлорид титана = 0,9 : 0,9 : 1. При таком соотношении в каучуке содержится около 3 % олигомеров и 10 % рыхлого геля. Синтез такого каучука («безгелевого») представляет значительный интерес, поскольку повышается однородность по свойствам для различных промышленных партий каучука и появляется возможность формирования более совершенной вулканизационной сетки в вулканизатах.
Получение безгелевого каучука возможно при использовании лантаноидсодержащих каталитических систем. Их особенностью является необходимость увеличения соотношений А1: лантаноид, поскольку при увеличении этого соотношения в интервале 4—20 возрастает скорость полимеризации. Но при этом наблюдается снижение молекулярной массы полиизопрена (рис.3), так как триалкилалюминий оказывает регулирующее воздействие.
Полимеры, образующиеся на этих катализаторах, содержат до 98 % звеньев 1,4-цис-, и практически все молекулы мономера присоединяются по типу «голова к хвосту». Содержание 3,4-звеньев зависит от природы лантаноида и симбатно изменяется с температурой полимеризации (рис.4). Однако лантаноидные катализаторы пока не применяются при промышленном получении изопреновых каучуков, хотя привлекают к себе внимание научных центров многих стран мира.
Получение катализатора в промышленности — это самостоятельная производственная стадия. Если каталитический комплекс получают непосредственно в полимеризаторе (катализатор insitu), полимеризация протекает с меньшей скоростью (рис. 5). Кроме того, каучук, получаемый этим методом, содержит олигомеры и гель.
При получении каталитического комплекса необходимо интенсивное перемешивание как для отвода теплоты, так и для формирования мелкодисперсного катализатора. При понижении температуры получения каталитического комплекса возрастает его активность. Например, изменение температуры от 30 до — 40 °С позволяет ускорить полимеризацию в 2 раза и одновременно снизить дозировку катализатора в 2,5 раза. При еще более низкой температуре приготовления каталитического комплекса (—70°С) кроме снижения расходных коэффициентов катализатора и интенсификации полимеризации существенно уменьшается содержание геля в каучуке.
Для повышения активности каталитического комплекса необходимо время для его «созревания». Так, скорость полимеризации возрастает в первые 30 мин созревания комплекса, затем остается на постоянном уровне в течение 24 ч созревания, при более продолжительной выдержке комплекса наблюдается снижение его активности (рис.6).
К компонентам катализатора предъявляют серьезные требования по чистоте, а при наличии примесей принимают меры для них.
Рис. 3 Зависимость молекулярной массы полиизопрена от степени превращения при полимеризации на лантаноидной каталитической системе при различных соотношениях Al: Ln.
Рис. 4. Влияние температуры на микроструктуру полиизопрена при полимеризации на различных ланганоидных каталитических системах, удаления.
Рис.5. Кинетические кривые полимеризации изопрена в присутствии предварительно сформированного (/) и приготовленного insitu (2) каталитического комплекса Т1С14—ТИБА.
Рис.6. Кинетические кривые полимеризации изопрена на каталитическом комплексе Т1С14— ТИБА (на кривых указано время созревания комплекса).
Например, если в TiCl4 присутствуют примеси ТЮСЬ, НС1 и другие, его подвергают ректификации в колонне с медной насадкой. Ниже приведено содержание примесей в тетрахлориде титана до (I) и после (II) перегонки в присутствии меди, % (масс.):
I II
TlOCl2 0,65 0,08
НС1 0,05 0,01—0,02
COi 0,03 Следы
SOC12 0,001 Следы
В составе триизобутилалюминия, синтезируемого по реакции 3(СНз)2С=СНз
+А1+1.5Н2 —> А1(изо-С4Н9)з,
могут присутствовать следующие примеси: изобутилен, диизобутилалюминийгидрид, диизобутилалюминийхлорид, диизобутил-изобутоксиалюминий и др. Изобутилен практически не влияет на полимеризацию и свойства полимера, а суммарное содержание примесей, являющихся побочными продуктами синтеза триизобутилалюминия, не должно превышать 1,0 % от массы целевого продукта.
Полимеризация изопрена может осуществляться в различных алифатических и ароматических углеводородах, хорошо растворяющих образующийся каучук.
Скорость полимеризации в большинстве случаев симбатна скорости растворения полимера в растворителе. При недостаточно высокой скорости растворения полимер обволакивает активные центры катализатора, что приводит к замедлению полимеризации в тем большей степени, чем медленней растворяется полимер. Наиболее высока скорость полимеризации при использовании бензола и изопентана, в промышленности нашел применение только изопентан. Достоинствами этого растворителя являются: сравнительно невысокая вязкость полимеризата, возможность получения высокомолекулярного полимера в течение всего периода полимеризации, низкая температура кипения, что облегчает процесс выделения каучука и т. п.
При получении каталитического комплекса необходимо интенсивное перемешивание как для отвода теплоты, так и для формирования мелкодисперсного катализатора. При понижении температуры получения каталитического комплекса возрастает его активность. Например, изменение температуры от 30 до —40°С позволяет ускорить полимеризацию в 2 раза и одновременно снизить дозировку катализатора в 2,5 раза. При еще более низкой температуре приготовления каталитического комплекса (—70 °С) кроме снижения расходных коэффициентов катализатора и. интенсификации полимеризации существенно уменьшается содержание геля в каучуке.
Полимеризация изопрена в изопентане осуществляется непрерывным способом в батарее последовательно соединенных полимеризаторов, охлаждаемых через рубашку. Для эффективного отвода теплоты реакции (тепловой, эффект реакции полимеризации изопрена составляет 1,05 МДж/кг) полимеризаторы снабжены скребковыми мешалками, способствующими очистке поверхности теплообмена.
При работе батареи из 4—6 полимеризаторов в изотермическом режиме первый реактор, где конверсия может достигать 30—50%, оказывается наиболее напряженным в отношении теплосъема, и, несмотря на автоматическое регулирование температуры, возможны местные перегревы, влекущие за собой снижение Мn каучука и отложение полимера на стенках реактора. При сравнении работы разных батарей или одной и той же батареи в течение продолжительной эксплуатации наблюдается неоднородность полимера по Мn, ММР и физико-механическим показателям вулканизатов.
В качестве антиагломераторов можно применять сополимеры стирола с малеиновым ангидридом (стиромаль), растворимые производные целлюлозы, поливиниловый спирт, а также тальк, барит, каолин, кизельгур, фосфат кальция и др. Диспергирование полимера с одновременным нагревом частиц осуществляют в крошкообразователях инжекторного типа.
После первой ступени дегазации дисперсия каучука в воде, содержащая около 5 % полимера, концентрируется до содержания полимера примерно 10 % в специальных фильтрующих устройствах. Фильтр снабжен пульсационной камерой, куда подается азот под давлением (для предотвращения отложений каучука на внутренней поверхности фильтра).
Водная дисперсия каучука после дегазатора второй ступени направляется на выделение и сушку полимера.
1.2Характеристика сырья и готовой продукции
Выпускаемый промышленностью каучук СКИ-3 по пластичности подразделяется на две группы и должен удовлетворять следующим техническим требованиям:
I группа II группа
Вязкость по Муни, не менее 60 50
Пластичность 0,30—0,40 0,41—0,50
Сдержание золы, %, не более 0,7 0,7
Содержание металлов, %, не более
медь 0,0002 0,0003
железо 0,006 0,006
титан 0,1 0,1
Потери массы при 105 °С, %, не более 0,6 0,7
Содержание стеариновой кислоты, % 0,5—13 0,5—1,8
Содержание нафтама-2, % 0,4—0,8 0,4—0,8
Содержание 1,4-дифенил-п-фенилен
-диамина, % 0,2—0,5 0,2—0,5
Условная прочность при растяжении, МПа, не менее
при 20 °С 26,5 25,5
при100°С 16,7 15,7
Относительное удлинение, %, не менее 700 700
Остаточное удлинение, %, не более 16 16
Выше уже отмечалось, что каучук СКИ-3 уступает натуральному как в невулканизованном состоянии, так и при сравнении свойств резин. Разработаны новые марки изопреновых каучуков, превосходящие СКИ-3 по некоторым показателям.
Каучуки СКИ-ЗА (содержание геля до 7 %) и СКИ-ЗШ (содержание геля = 7 %) более стабильны по свойствам, чем СКИ-3, имеют повышенные физико-механические показатели и поэтому предназначены для замены НК в некоторых изделиях.
Путем модификации каучука СКИ-3 получен ряд новых каучуков, по отдельным показателям приближающихся к НК или даже превосходящих его. При введении карбоксильных групп в каучук путем оксосинтеза получен каучук СКИ-ЗК;
СКИ-ЗЭ и СКИ-ЗМ — каучуки, содержащие соответственно эпоксидные и гидроксильные группы. При модификации полиизопрена малеиновым ангидридом или другими производными малеиновой кислоты получают каучук СКИ-ЗМА. Введение уже 1 % модификатора приводит к повышению прочности связи резин с кордом, улучшению упругих и упруго-гистерезисных показателей.
Наиболее высокими техническими свойствами характеризуется каучук СКИ-3-01, обладающий повышенной когезионной прочностью сырых резиновых смесей (рис.7); резины на основе этого каучука по эластическим свойствам практически идентичны резинам из НК, характеризуются несколько меньшим теплообразованием, но уступают им по сопротивлению раздиру и модулю упругости.