Введение
1. Технологическая часть
1.1 Теоретические основы принятого метода производства
1.2 Характеристика сырья и получаемого продукта
1.3 Описание технологической схемы производства
1.4 Материальный расчет производства
1.5 Описание устройства и принципа действия основного аппарата
2. Физико-химические методы анализа
2.1 Колорометрический
2.2 Гравиметрический
2.3 Потенциометрический
2.4 Спектрофотометрический
3. Применение СКИ
Заключение
Список используемой литературы
В промышленности синтез каучуков проводится полимеризацией мономеров с кратными связями, поликонденсацией полифункциональных соединений и химической модификацией высокомолекулярных соединений. Наряду с развитием производства стереорегулярных каучуков СКИ-3 и СКД успешно развиваются новые направления по созданию высокоэффективных каучуков с комплексом технически ценных свойств. Одним из таких новых путей является синтез стереорегулярных ненасыщенных каучуков общего назначения полимеризацией циклоолефинов с раскрытием кольца. Наиболее доступным и технологичным из таких полимеров является транс-полипентенамер, получаемый из циклопентена с использованием каталитических систем на основе алюминийорганических соединений и галогенидов переходных металлов. Новым направлением является и синтез чередующихся, или альтернантных полимеров. Наибольший интерес для промышленности синтетических каучуков представляют альтернантные сополимеры на основе бутадиена и пропилена. Металлоорганические катализаторы на основе соединений цинка или алюминия используются для синтеза каучуков из органических оксидов путем раскрытия напряженных кислородсодержащих циклов (пропиленоксидные и эпихлоргидриновые каучуки).
(СКИ-3), 1,4-цис-бугадиеновый- (СКД), этилен-пропиленовый (СКЭП) и этилен-пропилен-диеновый (СКЭПТ), бутилкаучук (БК), статистические сополимеры бутадиена со стиролом (ДС-СК), бутадиен- (или изопрен-)-стирольные термоэластопласты (ДСТ или ИСТ), полиизобутилен, цис- или транс-полипентенамеры (ЦПА или ТПА), альтернантные сополимеры бутадиена с пропиленом (СКБП-А), эпоксидные каучуки (СКПО, СКЭХГ, СКЭХГ-С), 1,2-полибутадиен (СКД-СР).
Изопреновый синтетический каучук является продуктом радикальной полимеризации мономера-изопрена в растворителе-изопентана в присутствии каталитического комплекса Циглера-Натта.
Каучук представляет собой стереорегулярный полимер и имеет ту же молекулярную структуру, что и натуральный каучук.
Эмпирическая формула: (С5Н8)n, где n - число звеньев изопрена, составляющих молекулу полимера.
Структурная формула:
~CH2-C=CH-CH2 - CH2-C= CH-CH2- CH2-C=CH-CH2~
| | |
CH3CH3CH3
Основным структурным звеном является группировка цис-1,4:
CH3 H
`C=C
~ CH2 `CH2 ~
Так же изопреновый каучук имеет конфигурации 1,4-транс и 3,4:
CH3 CH2 ~ ~CH2-CH~
`C=C ; |
~ CH2 ` HCH3-C=CH2
Изопреновый каучук состоит из молекул различного молекулярного веса, который колеблется в широких пределах от 350000 до 1000000 и выше.
Содержание цис-1,4-звеньев составляет не менее 96%. Внешний вид СКИ-3 - однородная, монолитная, эластичная масса темного цвета. Обладающая упругими свойствами и прочность каучуки сохраняют в сравнительном широком интервале температур.
Удельный вес каучука - 0,91-0,92 г/см3.
Каучук горюч, не ядовит, растворим в бензоле, бензине, хлороформе и других растворителях.
В зависимости от физико-механических, химических свойств и применяемого стабилизатора выпускаются следующие виды каучука: СКИ-3, СКИ-3С, СКИ-3Д, СКИ-3Ш, СКИ-3ЛК, СКИ-3НТ. Основными потребителями каучука являются шинная промышленность и производство различных резинотехнических изделий. Ассортимент выпускаемых в нашей стране резиновых изделий превышает 100 тыс. наименований. Для комплектации одного современного автомобиля в среднем необходимо 300-500 резиновых изделий (автомашина КамАЗ имеет 800 комплектующих резиновых изделий). Один самолет содержит 10-2 тыс., а морское судно - до 30 тыс. резиновых изделий. Для автомобиля средней грузоподъемности около 30 % от себестоимости составляет удельная стоимость шин, а за время работы машины комплект шин меняется 5-6 раз. Отсюда становится понятным, какое внимание сегодня следует уделять повышению качества и работоспособности резиновых изделий.
1. Технологическая часть
1.1 Теоретические основы принятого метода производства
Процесс получения каучука обычно складывается из нескольких основных стадий: 1) приготовление катализатора (или компонентов каталитического комплекса); 2) полимеризация; 3) дезактивация катализатора и отмывка раствора полимера от продуктов дезактивации катализатора; 4) отгонка мономера и растворителей (дегазация) и выделение каучука; 5) регенерация возвратных продуктов и очистка-сточных вод.
Наиболее распространенной каталитической системой при получении 1,4-цис-изопренового каучука является титановая, состоящая из b-TiCI3 и алюминийорганического соединения. В нашей стране каучук, получаемый на таких катализаторах, имеет марку СКИ-3.
Промышленные каталитические комплексы получают на основе TiCl4 и алюминийорганических соединений, из которых наиболее эффективны триизобутил-, трифенил-, три-п-толилалюминий. Для промышленных систем чаще всего используют триизобутилалюминий (ТИБА), позволяющий проводить процесс с высокой воспроизводимостью. Привлекают внимание также менее опасные в работе высшие гомологи алюминийалкилов. Такие каталитические системы обладают высокой стереоселективностью и менее чувствительны к различным примесям.
Оптимальным соотношением компонентов каталитического комплекса является 1 : 1 (рис. 1), поскольку при этом наблюдается максимальный выход полимера и практически не образуется циклических структур и олигомеров.
При избытке триизобутилалюминия происходит более глубокое восстановление Ti4+ (до Ti2+ и даже до элементарного Ti), что приводит к замедлению полимеризации и образованию низкомолекулярных продуктов. При избытке тетрахлорида титана образуются алкилалюминийдихлориды, вызывающие резкое снижение содержания 1,4-цис-звеньев в полимере и вторичные реакции в полимерных цепях (циклизацию, изомеризацию, сшивание). В результате получаются жесткие, малоэластичные продукты.
С увеличением концентрации катализатора заметно возрастает скорость полимеризации, но уменьшается молекулярная масса образующегося полимера (рис.2).
Рис. 1. Влияние состава каталитического комплекса на степень превращения изопрена через 30 (/) и 60 (2) минут полимеризации.
Рис.2. Влияние концентрации каталитического комплекса на скорость полимеризации и молекулярную массу полиизопрена.В промышленном процессе концентрация каталитического комплекса составляет 1 ± 0,5 % (масс.) (в расчете на мономер).
В процессе приготовления катализатора немаловажным оказывается порядок введения его компонентов. Если алюминийорганическое соединение вводится в раствор TiCl4, то часть тетрахлорида титана остается непревращенной, и при полимеризации наряду с анионно-координационньм механизмом реализуется катионная полимеризация изопрена. Кроме того, возможны процессы цис-транс-изомеризации, циклизации макромолекул под влиянием TiCl4 Обратный порядок введения компонентов приводит к чрезмерному восстановлению части титана и снижению активности катализатора. Поэтому лучше производить одновременную дозировку компонентов катализатора.
В качестве растворителя при приготовлении катализатора используют толуол или другие ароматические углеводороды, образующие донорно-акцепторные комплексы с катализатором. Это не только повышает активность катализатора, но и способствует снижению содержания геля в полимере.
Повышению активности катализатора способствует введение в его состав электронодонорных модифицирующих добавок, например, аминов, эфиров, спиртов, фенолов, тиоэфиров. Наиболее широко используют в качестве модификатора дифениловый эфир (дифенилоксид) или его смесь с бифенилом (71:29), известную под названием дифил или даутерм. Известно также об использовании двух и более модифицирующих добавок, например, электронодонорного и ПИ-донорного типа (ненасыщенные соединения). Таким образом, наиболее активные каталитические системы являются четырех- или даже пятикомпонентными. Поскольку такие катализаторы более активны, их дозировки могут быть значительно меньшими, чем для двухкомпонентных систем. Так, если дозировка двухкомпонентного катализатора составляет 1,5 % (масс.), то для четырехкомпонентного она равна 0,4 % (масс.).
Механизм действия модификаторов обычно связывают с двумя факторами:
1. Добавка электронодонора способствует переводу триизобутилалюминия из менее активной димерной в мономерную форму и образованию комплекса с электронодонором.
Наиболее высока каталитическая активность комплексов при соотношении дифенилоксид: триизобутилалюминий = 2.
2. Введение электронодонора, способного образовывать комплексы со
свободными d2 sp3-орбиталями титана, способствует активации катализатора.