Смекни!
smekni.com

Технологія виробництва азотної кислоти (стр. 2 из 5)

Промислові каталізатори процесу окислювання аміаку.

Ці каталізатори являють собою сплав платини з 4% Pd і 3% Rh. Платинові каталізатори виготовляють у вигляді сіток з тонкого дроту діаметром 0,06-0,09 мм, що мають 1024 отвору в 1 см2. Сітки ці для створення визначеного часу контактування скріплюються у вигляді пакета, встановленого в контактному апараті.

На 1 м2 активній поверхні контактної сітки під атмосферним тиском можна окислити до 600 кг, а при тиску 0,8 МПа - до 3000 кг аміаку на добу. Однак при роботі під тиском 0,8 МПа і вище платиновий каталізатор руйнується швидше.

Руйнуванню каталізатора сприяють і багато контактних отрут (сполуки сірки, фосфін і ін.), які крім отруєння каталізатора знижують його механічну міцність. Домішки (пил, іржа, мастило і т.п. ), що утримуються в газі, також знижують активність і міцність каталізатора. Для відновлення активності каталізатора його промивають розведеним розчином соляної кислоти. Усе це приводить до того, що в процесі окислювання аміаку каталізатор стає пухким і дрібними частками його несуться з потоком газу. Якщо під атмосферним тиском віднесення платини на 1 т азотної кислоти складає 0,04-0,06 г, то при підвищеному він досягає вже 0,15-0,20. Частина Pt уловлюється і регенерується, але і при цьому витрати платини складають значну частину собівартості азотної кислоти.

З метою економії платини застосовують двухстадійне контактування, при якому аміак частково окисляється на платиноїдних сітках, а потім доокислюється в шарі неплатинового зернистого каталізатора. Як неплатинові каталізатори застосовують різні композиції оксидів або солей, у тому числі оксиди заліза або хрому, солі кобальту.

Питома продуктивність платинового каталізатора висока завдяки високій швидкості реакції окислювання. Якщо швидкість усього процесу окислювання визначається швидкістю дифузії аміаку в газі, то інтенсивність роботи каталізатора 1 [кмоль/(м2*с*Па)] буде характеризуватися рівнянням

де D - коефіцієнт дифузії аміаку в повітрі; R - молярна газова стала; Т - абсолютна температура; l - середня довжина дифузійного шляху молекули аміаку.

Активність каталізаторів може сильно знижуватися внаслідок отруєння деякими домішками, що маються в газовій суміші, або ж у результаті дії механічних суспензій. До найбільш сильних контактних отрут процесу окислювання аміаку належать сполуки сірки і фосфору.

У промисловості застосовується кілька типів контактних апаратів для окислення аміаку. Однак усі вони мають приблизно однаковий принцип дії.

При підвищеному тиску встановлюють до 18 сіток. При двухстадійному контактуванні (мал. 3) число платиноїдних сіток може бути знижене до 1-3 (при підвищеному тиску).

Окислення оксиду азоту (ІІ) до діоксиду. Нітрозні гази, одержані при окисленні аміаку, містять NО і інші оксиди азоту, кисень, азот і пари води. Для одержання азотної кислоти оксид азоту (ІІ) необхідно окислити до діоксиду.

Процес окислення NО киснем повітря описують наступним сумарним (балансовим) рівнянням:

2NO+O2 ↔ 2NO2, ∆Н=-112кдж(ж)

Відповідно до принципу Ле Шателье рівновага цього процесу зміщується вправо при підвищенні тиску і зниженнітемператури. Практично утворення діоксиду азоту починається при температурі нижче 700°С, а при температурі нижче 100°С рівновага майже цілком зміщена вправо.

Рис. 3. Контактний апарат

1 - розподільні ґрати; 2 - корпус апарата; 3 - платиноїдна сітка; 4 - шар неплатинового каталізатора; 5 - насадка; 6-опорні ґрати

Константа швидкості процесу збільшується зі зниженням температури, що іноді розглядають як порушення закону Арреніуса. У дійсності це явище можна пояснити тим, що процес по формулі (ж) протікає в дві стадій. Спочатку відбувається швидка оборотна екзотермічна реакція димеризації оксиду азоту

2NO ↔N2O2 (з)

а потім окислення димера по екзотермічній практично необоротній (при t<100°С) реакції

N2O2 + О2 ↔ 2NO2 (і)

При підвищенні температури рівновага реакції (з) зміщується вліво, концентрація димера N2O2 сильно знижується. Відповідно знижується і швидкість реакції (і)

У результаті зменшується і загальна швидкість процесу. Тому для збільшення швидкості перетворення NO у NO2 реакційну суміш енергійно охолоджують. Підвищення тиску сприяє зміщенню рівноваги по реакції (з) в бік димера і збільшенню швидкості реакції (і). Підвищується і ступінь абсорбції діоксиду азоту. Тому в останні роки у виробництві азотної кислоти перейшли від установок під атмосферним тиском до підвищеного тиску до 1 МПа.

При окислюванні оксиду азоту може протікати реакція асоціації NO2 з утворенням димера:

2NO2 ↔Ν2О4 ∆Н = -57 кДж


Швидкість цієї реакції дуже велика, а рівновага з підвищенням тиску і зменшенням температури зміщується в праву сторону.

Таким чином, у нітрозних газах, що надходять на абсорбцію, містяться NO2, N2O4, O2, N2O, NO, N2O2, N2, пари води та ін.

Абсорбція діоксиду азоту і його димера протікає за схемами

2 NO2 + Н2О ↔ HNO3 + HNO2, ∆Н = - 116 кДж

N2О2 + Н2О ↔ HNO3 + HNO2, ∆Н = - 59 кДж

Одержана при цьому азотиста кислота нестійка і розкладається:

3HNO2 ↔HNO3 + 2NO + Н2О, ∆Н = 76 кДж

Тому сумарно взаємодію NO2 з водою можна представити рівнянням реакції

3NO22О→ 2HNO3 + NO, ∆H = - 136 кДж

Поглинання діоксиду азоту водою - типовий хемосорбциійний процес у системі газ - рідина.

У виробництві необхідно одержувати кислоту як можна вищої концентрації. При цьому збільшується пружність оксидів азоту над розчином кислоти, що знижує рушійну силу процесу і, отже, загальну швидкість процесу. Для зміщення рівноваги убік утворення HNO3 необхідно знижувати температуру, а також підвищувати тиск. При абсорбції оксидів азоту використовують принцип протипотоку, тобто більш концентрований газ кантактує з концентрованою кислотою, а наприкінці абсорбції залишки NO2 поглинаються найбільш слабкою кислотою.

Внаслідок екзотермічності процесу абсорбції температура вихідної продукційної кислоти звичайно складає не менш 50 °С, тому в установках, що працюють під атмосферним тиском, виходить кислота, що містить лише 50% HNO3. В установках, що працюють під тиском 0,6-0,8 МПа, можна одержати 58-60%-ну кислоту. Піднімаючи тиск до 5 МПа, в установках прямого синтезу HNO3 з оксидів азоту і кисню одержують кислоту концентрацією 98% HNO3.

2.2 Технологічна схема виробництва азотної кислоти

Для одержання розведеної азотної кислоти з аміаку в промисловості донедавна використовували три системи: 1) під атмосферним тиском; 2) під підвищеним тиском і 3) комбіновані, у яких окислення аміаку відбувається під атмосферним тиском, а окислення оксиду азоту й абсорбція NO2 водою - під підвищеним тиском.

Незважаючи на менші витрати платини, системи виробництва кислоти під атмосферним тиском у даний час не застосовуються через низьку продуктивність, громіздкості апаратури і відповідно значні капіталовкладення, істотні втрати аміаку і необхідність застосування дорогого і не надто ефективного лужного очищення газів, які виділяються з оксидів азоту. Сучасні установки, що працюють під підвищеним тиском (від 0,2 до 1 МПа), і комбіновані розроблені за принципом енерготехнологічних систем, у яких енергія газів (пов'язана з їх високою температурою і тиском) і теплота реакції окислення аміаку використовуються для стиску повітря і нітрозних газів, а також одержання технологічної пари. Цими ж схемами передбачено більш повне використання низкопотенційної теплоти.

Принципова технологічна схема одержання розведеної азотної кислоти під підвищеним тиском наведена на мал. 4.


Рис. 4. Принципова технологічна схема одержання розведеної азотної кислоти під підвищеним тиском (0,73 МПа)

1 - повітрозабірна труба; 2 - повітроочисник; 3 - газовий компресор; 4 - газова турбіна; 5 - повітропідігрівач; 6 - випарник аміаку; 7 - змішувач з фільтром; 8 - контактний апарат; 9, 17-казан-утилізатор; 10- окислювач з фільтром; 11 - абсорбційна колона; 12 - обдувна колона; 13 - холодильник-конденсатор; 14 - підігрівач хвостових газів; 15 - реактор каталітичного очищення; 16 - камера згоряння; 18 - вихлопна труба

Атмосферне повітря після відповідного очищення надходить у компресор 3, який приводиться в рух газовою турбіною 4. У компресорі повітря стискається до тиску 0,73 МПа, нагріваючись при цьому до 135°С, і надходить далі в підігрівач повітря 5, де його температура підвищується до 250 °С за рахунок теплоти нітрозних газів, яківиходять з окислювача 10. У змішувачі 7 повітря змішується з газоподібним аміаком, яке надходить сюди з випарника аміаку 6. Аміачно-повітряна суміш, що утворилася, далі надходить у контактний апарат 8, де при температурі близько 900 С на Pt-Rh-Pd-каталізаторі відбувається окислення аміаку. Нітрозні гази, що містять 9,0- 9,5% NO, надходять у казан-утилізатор 9, у якому відбувається охолодження до необхідної температури й утворення пари. Далі гази надходять в окислювач 10, у якому окислюються до діоксиду азоту. Охолоджені в підігрівачі повітря 5, підігрівачі хвостових газів 13 і холодильнику-конденсаторі 12 до температури близько 45 °С нітрозні гази надходять в абсорбційну колону 11, зрошувану протипотоковим струменем води. Оскільки абсорбція NO2 водою екзотермічна, абсорбційні тарілки мають змієвидні холодильники, у яких циркулює охолодна вода (на схемі не показано). Отримана азотна кислота надходить в обдувну колону 12, де за допомогою гарячого повітря з готової азотної кислоти відбувається обдувка розчинених у ній нітрозних газів, що подаються в абсорбційну колону. Хвостові гази, пройшовши систему каталітичного очищення від оксидів азоту відновленням їх аміаком до елементного азоту, викидаються в атмосферу.