Мурашина кислота знижує коефіцієнт розмноження дріжджів, не викликаючи при цьому відмирання клітин. Оцтова кислота - порівняно слабкий інгібітор.
Деякі важкі метали в дуже малих концентраціях вбивають дріжджові клітини (срібло – 0,000001%, мідь – 0,005%), а в концентраціях, що не піддаються визначенню хімічним аналізом, гальмують ріст дріжджів. Бактерицидна дія важких металів залежить від складу середовища, її кислотності, температури та густини дріжджової популяції.
В разі присутності фурфуролу в середовищі, що зброджується, зменшується кількість клітин, що брунькуються, та їх розмір. Навіть при незначному вмісті фурфуролу знижується мальтозна і зимазна активність дріжджів, що були виділені з мелясної бражки.
Сульфонал у невеликих концентраціях (70 – 100 г на 1 т меляси) не впливає на життєдіяльність дріжджів і пригнічує молочнокислу мікрофлору. Хлор, хлорне вапно, манганокислий калій, сильно окислюючи органічні сполуки, руйнують їх.
В бражках з підвищеним вмістом йонів Са, Мg, Fe у дріжджових клітин втрачається водна оболонка, через що зменшується йонна сфера й електричний заряд на поверхні клітин і створюються умови для аглютинації дріжджів.
Спиртові раси дріжджів мають негативний електрокінетичний потенціал: від -7 до -13 мВ, через що вони адсорбують на своїй поверхні меланоїдини з позитивним потенціалом. Зі зниженням рН середовища електрокінетичний потенціал меланоїдинів зростає, у зв’язку з чим збільшується ступінь адсорбції їх на дріжджових клітинах. Меланоїдини присвоюють дріжджам темний колір, сприяють відмиранню дріжджових клітин, і, як наслідок, приводять до зниження їх ферментативної активності, а саме активності інвертази та каталази.
Десорбція фарбуючи речовин з поверхні дріжджової клітини проходить інтенсивно при рН промивної води вище 9. При рН близько 3 фарбуючи речовини не десорбуються.
Багато ферментів дріжджів активуються в присутності сульфгідрильних сполук, що містять SH-групи, таких, як цистеїн, глютатіон. Ці сполуки легко перетворюються одне в друге, мають важливе значення в активуванні та шелюгуванні дії багатьох окислювально-відновлювальних і гідролітичних ферментів, що визначають життєдіяльність та обмінні процеси мікроорганізмів.
SH-групи грають важливу роль в ланцюгу окислювально-відновлювальних реакцій, і являються необхідною ланкою в передаванні електрона від сукцината до кисню повітря через цитохром. Активність багатьох дегідрогеназ, флавонових та пірідоксалевих ферментів пов’язана з наявністю в молекулі вільних SH-груп.
Відновлений глютатіон та цистеїн прискорюють спиртове зброджування внаслідок відновлення SH-групи толових ферментів, що беруть участь в анаеробному та аеробному окислюванні цукрів. Однак використання цих речовин дуже дорого коштує та економічно недоцільне; в якості їх аналогів може бути використаний дріжджовий автолізат.
2.3 Біохімія бродіння та дихання
2.3.1 Анаеробний розпад вуглеводів
Ферментативна дисиміляція вуглеводів в анаеробних умовах, що відбувається з виділенням енергії та приводить к утворенню продуктів неповного окислення, називається бродінням. В цьому процесі акцептором водню слугують органічні сполуки, які утворюються в реакціях окислення (наприклад, оцтовий альдегід при спиртовому бродінні); кисень у цих реакціях не бере участі.
Схема хімічних перетворень при спиртовому бродінні описується такими послідовностями:
- утворюються фосфорні етери цукрів. Під впливом ферменту гексокинази та аденілових кислот, що є донорами та акцепторами фосфорної кислоти, глюкоза перетворюється в глюкопіранозо-6-фосфат. Аденілові кислоти в дріжджах містяться у вигляді аденозинмонофосфату (АТФ), адинозиндифосфату (АДФ) та аденозинтрифосфату (АТФ). Гексокиназа каталізує перенос однієї фосфорної групи з АТФ на глюкозу. При цьому АДФ перетворюється в АДФ, а залишок фосфорної кислоти приєднується по місцю розташування шостого вуглецевого атома. Дія ферменту активується йонами мангану. Подібно до цього йде перетворення D-фруктози та D-манози. Глюкокіназна реакція визначає швидкість процесу бродіння.
- глюкозо-6-фосфат під дією ферменту глюкозофосфатизомерази підпадає під вплив ізомеризації – перетворенню в глюкозо-6-фосфат. Реакція зворотна та здвигнута у бік фруктозо-6-фосфату.
- фруктозо-6-фосфат під дією ферменту фосфофруктокинази приєднує по місцю першого вуглецевого атому другий залишок фосфорної кислоти за рахунок АТФ та перетворюється в фруктозо-1,6-дифосфат. Ця реакція практично не зворотна. Молекула цукру переходить до оксоформи та стає лабільною, що має можливість до подальшого перетворення, тому що послаблюється зв'язок між третім та четвертим атомами вуглецю.
- під дією ферменту альдолази (що активується йонами Со2+, Са2+, Zn2+) фруктозо-1,6-дифосфат розпадається на дві фосфотриози – 3-фосфогліцериновий альдегід та фосфодиоксіацетон. Ця реакція зворотня.
- між фосфотриозами відбувається реакція ізомеризації, що каталізується ферментом триозофосфатізомеразою. Рівновага встановлюється при 95% 3-фосфогліцеринового альдегіду та 5% фосфодіоксиацетону.
- в індукційний період, поки що в якості проміжного продукту не утворюється оцтовий альдегід, між двома молекулами 3-фосфогліцеринового альдегіду під впливом ферменту альдегідмутази при участі молекули води проходить реакція дисмутації. При цьому одна молекула фосфогліцеринового альдегіду відновлюється, та утворюється фосфогліцерин, друга окислюється в 3-фосфогліцеринову кислоту. Фосфогліцерин у подальших реакціях не бере участі та після відщеплення фосфорної кислоти являється побічним продуктом спиртового бродіння.
При встановленому процесі окислення 3-фосфогліцеринового альдегіду в 3-фосфогліцеринову кислоту проходить складним шляхом. Спочатку він перетворюється в 1,3-дифосфогліцериновий альдегід, приєднуючи залишок неорганічної фосфорної кислоти, після цього під дією ферменту триозофосфатдегідрогенази у присутності НАД (нікотинамідаденіндинуклеотиду) окислюється в 1,3-дифосфогліцеринову кислоту. НАД, коли вступає в реакцію зі специфічним білком, утворює анаеробну дегідрогеназу, яка має властивість віднімати водень безпосередньо від фосфогліцеринового альдегіду та інших органічних сполук.
- при участі ферменту фосфотрансферази залишок фосфорної кислоти, що містить макроенергетичний зв'язок, передається з 1,3-дифосфогліцеринової кислоти на АДФ з утворенням АТФ та 3-фосфогліцеринової кислоти. Енергія, що звільнюється при окисленні фосфогліцеринового альдегіду, резервирується в АТФ.
- під дією ферменту фосфогліцеромутази 3-фосфогліцеринова кислота ізоиерується в 2-фосфогліцеринову кислоту.
- в результаті віддавання води, що викликано перерозподілом внутрішньої енергії, 2-фосфогліцеринова кислота перетворюється у фосфоенолпіровіноградну кислоту, яка містить макроенергетичний зв'язок. Реакцію каталізує енолаза, що активується йонами Mn2+, Mg2+, Zn2+.
Максимальна дія енолази виявляється в інтервалі рН 5,2 -5,5. При рН 4,2 молекули енолази агрегуються, при рН 3 – 4 денатурується не зворотно.
- під дією ферменту фосфотрансферази у присутності йонів К+ залишок фосфорної кислоти передається від фосфоенолпіровіноградної кислоти на АДФ, резервуя енергію в АТФ.
- енолпіровіноградна кислота, що утворилася, перетворюється у більш стабільну форму.
- під дією ферменту карбоксилази від піровіноградної кислоти відщеплюється діоксид вуглецю та утворюється оцтовий альдегід.
- фермент алкогольдегідрогеназа переносить водень з відновленого НАД. Н2 на оцтовий альдегід, в результаті чого утворюється етиловий спирт та регенерується НАД.
2.3.2 Аеробний розпад вуглеводів
В умовах аеробіозу розпад вуглеводів до утворення піровиноградної кислоти триває так само, як і при анаеробіозі, але на відміну від нього піровиноградна кислота повністю окислюється до діоксиду вуглецю та води у циклі три карбонових кіслот – ЦТК. У цьому циклі послідовно відбуваються окисно-відновні реакції, в яких під дією специфічних дегідрогеназ відбувається перенос водню на молекулярний кисень – кінцевий його акцептор. Однак перенос відбувається не безпосередньо, а завдяки молекулам-переносчикам, що утворюють так званий дихальний ланцюг.
При катаболізмі глюкози утворюються дві молекули піровіноградної кислоти. Спочатку одна з них підпадає під реакції окислювального декарбоксилірування, в результаті яких утворюється ацетил-КоА (активована оцтова кислота):
Друга молекула піровіноградної кислоти під дією ферменту піруваткарбоксилази конденсується з молекулою оксиду вуглецю з утворенням щавєлєвооцтової кислоти:
При встановленому циклі щавєлєвооцтова кислота утворюється з яблучної (малата).
Особисто ЦТК починається з конденсації ацетил-КоА з молекулою щавєлєвооцтової кислоти, що каталізується ферментом цитратсинтазою. Продуктами реакції являються лимонна кислота (цитрат) та вільний кофермент А:
За один оберт молекули піровіноградної кислоти приєднуються три молекули Н2О, виділяються 5 молекул Н2 та утворюються 3 молекули СО2.
В ЦТК «спалюються»не тільки вуглеводи, але й жирні кислоти (після попередньої деградації до ацетил-КоА), а також більшість амінокислот (після видалення аміногрупи у реакціях дезамінірування чи переамінірування).
В результаті аеробного та анаеробного розпадів вуглеводів дріжджам доставляється енергія та забезпечуються процеси синтезу біомаси різними попередниками. З щавєлєвооцтової та α-кетоглютарової кислот в результаті відновлювального амінування та переамінірування утворюються відповідно аспарагінова та глютамінова кислоти. Аспарагінова кислота може утворюватися також із фумарової кислоти. Синтез цих двох кислот займає головне місце у синтезі білків з вуглеводів. При конденсації фосфодиоксіацетону з альдегідами можуть утворюватися пентози, гексози та різноманітні полісахариди. Для синтезу біомаси дріжджі використовують також інші – анаплеротичні – шляхи, наприклад пентозофосфатний шлях. Пентозофосфати – попередники нуклеотидів та нуклеїнових кислот.