Министерство транспорта Российской Федерации
Федеральное агентство железнодорожного транспорта
Омский государственный университет путей сообщения (ОмГУПС)
Кафедра «Вагоны и вагонное хозяйство»
УЛЬТРОЗВУКОВОЙ КОНТРОЛЬ БЛИЖНЕЙ ПОДСТУПИЧНОЙ ЧАСТИ ОСИ КОЛЕСНОЙ ПАРЫ
Студентка гр. 15 З .
________ Локтева А.
Руководитель : профессор
кафедры «ВВХ»
___Ахмеджанов Р. А.
« » _________ 2008г
Омск 2008
Реферат
УДК 621.436
Курсовая работа содержит
Ось колесной пары, ультразвуковые волны, дефектоскоп, ультразвуковой контроль, пьезоэлектрический преобразователь, дефект.
Цель работы − ознакомление с технологией проведения ультразвукового контроля и составлением технологических карт.
Ультразвуковой метод контроля (далее УЗК) обеспечивает обнаружение в элементах колёсных пар внутренних и поверхностных усталостных трещин и несплошностей, за счёт соотношения отражающих свойств дефекта с отражающими свойствами эталонных отражателей в стандартных или контрольных образцах конкретных элементов колёсной пары.
Задание
Задание: рассмотреть ультразвуковой контроль (УЗК) ближней подступичной части оси колесной пары.
Содержание
Введение
1.Физические основы ультразвукового неразрушающего контроля
1.1 Природа и типы ультразвуковых волн
1.2 Параметры ультразвуковых волн
1.3 Затухание ультразвуковых волн
1.4 Отражение, преломление и трансформация ультразвуковых волн
1.5 Излучатели и приемники ультразвуковых волн
2.Технологические средства ультразвукового контроля
2. 1 Дефектоскоп УД2-102
2. 2 Стандартный образец предприятия СОП 07.09.01 оси РУ1
3. Технология проведения ультразвукового контроля
3.1 Подготовка детали к проведению контроля
3.2 Подготовка аппаратуры к проведению контроля
3. 3 Контроль ближней подступичной части оси
3.4 Оценка результатов контроля
Заключение
Библиографический список
Введение
Колесные пары вагонов работаю в тяжелых условиях эксплуатации, подвергаясь резкопеременным нагрузкам, что способствует зарождению и развитию в их элементах усталостных трещин. Наиболее вероятно появление трещин в подступичной части и в районе галтелей. Трещины, являясь сильными концентраторами напряжений, развиваются поперек оси, обычно неравномерно по всей ее окружности. Наиболее эффективным является ультразвуковой контроль осей в условиях деповского и заводского ремонта. Он основан на уникальной способности ультразвуковых волн глубоко проникать в толщу металла и отражаться от несплошностей.
Ултразвуковой контроль осй более безопасный из методов неразрушающего контроля, а также он позволяет определять внутренние дефекты.
В данной курсовой работе рассматривается ультразвуковой метод неразрушающего контроля ближней подступичной части оси колесной пары.
1.ФИЗИЧЕСКИЕ ОСНОВЫ УЛЬТРАЗВУКОВОГО
НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ
1.1 Природа и типы ультразвуковых волн
В данной работе рассматривается ультразвуковой неразрушающий контроль. Но перед этим необходимо рассматреть природу ультразвуковых волн.
Любые отклонения от положения равновесия, совершаемые материальной точкой под действием какой-либо силы, называют колебаниями. Если при этом движущая сила увеличивается пропорционально отклонению, то такую силу называют упругой, а колебания – упругими или гармоническими.
Гармонический колебательный процесс (рисунок 2) может быть описан выражением
, где отклонение ξ, равное расстоянию колеблющейся точки от положения равновесия в произвольный момент времени t, называют смещением или амплитудой, ξ0 –максимальная амплитуда ее смещения, величину ωt + φ0, являющуюся аргументом косинуса, называют фазой, а параметр φ0 – начальной фазой колебания. Совместно с амплитудой ξ0 начальная фаза φ0 определяет положение, и скорость колеблющейся точки в начальный момент времени. Параметр называют круговой частотой (рад/с), в отличие от частоты f, равной числу полных колебаний в одну секунду ( Гц=1/с).Упругие колебания могут возникать в любой материальной среде. Наличие упругих межмолекулярных связей в среде между частицами позволяет передавать энергию колеблющихся частиц соседним и приводит к тому, что их смещения передаются от одного слоя частиц к другому в различных направлениях.
Процесс распространения колебаний в упругой среде иллюстрируется упрощенной пространственной моделью. Здесь отдельные частицы, из которых, по нашим представлениям, состоит твердое тело, прикреплены к своим местам упругими силами. Если одновременно привести в движение все частицы, расположенные по линии АВ, то сожмут пружины и передадут движение частицам по линии CD. Те в свою очередь передадут движение частицам по линии EF и т.д. Частицы по линии АВ, достигнув максимального смещения вправо, силами упругости (пружинами) будут возвращены в положение равновесия, по инерции пройдут его, достигнув максимального смещения влево, после чего возвратятся обратно. Таким образом, каждый слой материальных частиц будет совершать колебательное движение. Если бы частицы были соединены друг с другом жестко, то все они пришли бы в движение одновременно и находились бы постоянно в одинаковом состоянии движения, т.е. оставались бы в одинаковой фазе. В упругих средах дело обстоит иначе. Для передачи движения нужно некоторое время, и слои, к которым движение дошло позже, отстают по фазе от передних. В то время как частицы какого-либо слоя проходят через положение равновесия при колебаниях справа налево, частицы, расположенные в плоскостях правее, только начинают свой путь направо. Они запаздывают как раз на 1/2 периода колебания. Частицы претерпевают в каждом слое полный цикл колебания, передают свои смещения от слоя к слою слева направо с определенной скоростью возбуждения, так как имеет место запаздывание. Так возникает волна как процесс распространения упругих колебаний в материальной среде. И направление, по которому распространяется максимум энергии волнового движения, обозначают лучом.
В ультразвуковой дефектоскопии различают три типа волн:
Продольные волны ( l – волны), называемые волнами растяжения-сжатия, в которых направление смещения частиц параллельно направлению распространения волны; в этих аволнах существуют зоны повышенного и пониженного давления, обозначенные на рис 2 а, зонами разной густоты частиц;
Поперечные волны ( t- волны), в которых смещение частиц ортогонально направлению распространения волны (рис. 2 б).
Продольные волны могут существовать в любых средах (твердых, жидких, газообразных), в то время как поперечные волны – только в твердых средах, обладающих объемной упругостью.
Рисунок 2 - Типы ультразвуковых волн: а – продольная волна; б – поперечная волна; в – поверхностная волна; - поверхностные волны Рэлея
Поверхностные волны (s– волны) – упругие волны, распространяющиеся вдоль поверхностной, слабо напряженной границы твердового тела; (рисунок 2, в). Разновидность поверхностной волны, которая распространяется на границе «твердая среда – газ», называют волной Релея («R» - волна). Она является комбинацией продольных и поперечных волн, ее частицы в приповерхностном слое совершают колебательные движения по эллиптическим траекториям (рисунок 2, г). Большая ось эллипса при этом перпендикулярна к границе и совпадает с плоским фронтом волны. Входящая в R-волну продольная волна затухает с глубиной быстрее, чем поперечная, и поэтому частицы, совершая колебания, движутся по эллипсам с все большей глубиной и более вытянутым. Полное затухание поверхностной волны происходит на глубине 1-1,5 λ.
1.2 Параметры ультразвуковых волн
Ультрозвуковые волны характеризуются следующими основными параметрами: длиной волны λ (м), скоростью распространения волн С (м/с), колебательной скоростью частиц среды V (м/с), частотой f(Гц).
Главный параметр любой волны – длина волны λ. Она равна отрезку пути, пробегаемому волной за период Т времени, в течение которого происходит полный цикл одного колебания, т.е. λ=С.Т. Для продольных волн, например, это некоторое постоянное значение расстояния через которое чередуется зоны сжатия и разрежения, для поперечных – участки сдвига вверх – вниз. Длина волны λ – это внутренняя согласованная мера, относительно которой определяются и через которую связаны многие параметры волн, аппаратуры, среды.
Если учесть, что Т=1/f, то λ представляется в виде
Это основное соотношение в теории колебаний. Оно справедливо для всех волновых процессов. Отметим важное обстоятельство. Частота f является характеристикой источника колебаний, возбуждающего волну, скорость С – константа материала среды, в которой данная волна движется. В силу этого (2) является физически правильной записью соотношения между λ, С и f. Другие математические верные записи формулы (2) ( f=c/ λ или с= λ.f)самостоятельного физического смысла не имеют.
Длина волн для принятой в МПС частоты 2,5 МГц составляет миллиметры. Поэтому детали размером в десятки миллиметров можно считать бесконечными, что дает основание рассматривать существование продольных и поперечных волн раздельным, независимым.