Смекни!
smekni.com

Универсальное тепловое оборудование (стр. 4 из 7)

Плита №21б имеет центральное расположение камеры сгорания. По обе стороны ее размещены жарочные шкафы, омываемые газами, движущимися к борову, а затем в дымовую трубу. Центральное расположение камеры сгорания уменьшает неравномерность распределения температуры на поверхности плиты, но загрузка топлива и выгрузка золы осуществляются непосредственно в зале горячего цеха. Это резко ухудшает санитарно-гигиенические условия горячего цеха. Размеры плиты такие же, как и плиты №21а.

Правила эксплуатации твердотопливных плит. Перед началом работы проверяют тягу, состояние колосниковой решетки и зольника, при необходимости из зольника удаляют золу. Проверяют состояние топочных дверц и дверц шкафов, открывают шибер.

Топливо загружают равномерно, зажигают его и регулируют подачу воздуха с помощью дверцы зольника. Следят за процессом горения, периодически добавляя топливо. Для нормальной работы плиты следует не реже одного раза в неделю очищать газоходы от золы и сажи, для чего при чистке верхнего газохода снимают плитки чугунного настила, а при чистке нижнего газохода выдвигают дно шкафа. Если шкафы не имеют выдвижного дна, нижний газоход чистят через специальные лючки. При длительном перерыве в работе плиты перед ее растопкой следует прогреть дымоходы, сжигая в лючке борова небольшое количество бумаги, стружки. Тягу регулируют с помощью шиберов и дверцы зольника.

Жарочная поверхность плиты должна быть гладкой, ровной, чистой. Наличие деформированных конфорок не допускается.


3.4 Специализированные аппараты

К специализированным относятся аппараты и устройства для опаливания птицы и дичи, пассерования и припускания овощей и т. д.

Устройство УОП-1 для опаливания птицы и дичи (рис. 4) работает на газовом обогреве и служит для опаливания кур, цыплят, рябчиков, тетеревов и т. д. на предприятиях общественного питания.

Устройство состоит из рамы 1, закрытой с трех сторон облицовками. Сверху к раме крепится крышка 2, в которой предусмотрено отверстие для подключения к вытяжной вентиляции 7. В центре крышки установлен поворотный диск 3, к которому крепятся восемь крюков 4 для закрепления тушек. В средней части рамы имеется выдвижной поддон 9 для сбора отходов при опаливании. На правой передней стойке рамы имеются кронштейны для установки опалочной горелки 8 и запальника 5. Горелка с помощью гибкого шланга соединяется с блоком автоматики безопасности 6 типа АБ.

Опалочная горелка состоит из коллектора, на котором имеются четыре сопловых отверстия диаметром I мм. Смесительная трубка выполнена в виде трубы с сетчатым стабилизатором пламени. Запорное устройство состоит из подпружиненного клапана, штока с уплотнителем, рычага. Запорное устройство смонтировано в ручке горелки. При нажатии на рычаг шток отжимает клапан от седла, открывая проход газу. При отпускании рычага клапан плотно прижимается пружиной к седлу, при этом доступ газа к горелке прекращается. На передней стороне ручки укреплен отражатель, обеспечивающий защиту руки от воздействия открытого пламени.

Помещение, в котором устанавливается УОП-1, должно иметь приточно-вытяжное устройство и естественное освещение.

Производительность при массе тушки 1,5 кг — 40—60 шт./ч; тепловая мощность — 11700 Вт; габариты — 900x700x1800 мм, масса — 100 кг.


Рис. 4. Устройство УОП-1 для опаливания птицы и дичи:

а — разрез; б — схема

Аппарат тепловой электрический АТЭ-0,73 предназначен для пассерования нашинкованных овощей (лука, моркови) и припус-кания овощей (моркови, капусты) на предприятиях общественного питания.

Аппарат состоит из чаши (внутреннего котла), вокруг которого располагается кожух (наружный котел). Чаша и кожух соединены между собой сваркой. Пространство между чашей и кожухом заполнено теплоизоляцией. Ко дну чаши крепится блок электронагревателей, которые закрыты снизу теплоизоляционным слоем. Кожух котла установлен на цапфах, которые опираются на две тумбы. На первой тумбе спереди расположена панель управления, а внутри тумбы — панель с электроаппаратурой включения тэнов и электродвигателем привода червячного редуктора, опрокидывающего чашу. На первой тумбе также располагаются два датчика-реле температуры: датчик предварительного нагрева чаши и датчик аварийного отключения тэнов. На нижнем листе кожуха располагается электродвигатель, коническая передача и вал привода мешалки. При включении мешалки скребки перемешивают пассеруемые овощи, что исключает возможность их подгорания. Расположение электродвигателя и привода мешалки в кожухе не препятствует опрокидыванию чаши. Механизм привода мешалки поворачивается вместе с чашей. Чаша аппарата закрывается крышкой. Крышка чаши поворачивается вокруг неподвижной оси вращения, ее можно установить под любым углом в пределах от 0 до 90°. Перед опрокидыванием чаши крышку устанавливают в вертикальные положение: если этого не сделать, то механизм опрокидывания чаши будет заблокирован.

3.5. Индукционные плиты

Еще каких-то пару десятилетий назад невозможно было представить, что на одной части включенной конфорки плиты может находиться сырое яйцо, а на другой — поджариваться яичница (рис. 5). Демонстрация подобных трюков была под силу только иллюзионистам. Появление электрических плит с индукционным принципом нагрева сделало невероятное очевидным…

Рис. 5. Удивительные свойства индукционной конфорки

Спасибо Фарадею

Явление электромагнитной индукции было открыто Майклом Фарадеем в 1831 г. Наверное, первые опыты гениального англичанина, в которых демонстрировалось появление наведенного тока в проводнике, находящемся рядом с другим проводником тока, без прямого соприкосновения между ними, «по воздуху», многим тоже казалось цирковым трюком. Должны были пройти десятилетия, чтобы электромагнитная индукция в полную силу заработала в трансформаторах и электродвигателях, став основой мира электричества.

Первая индукционная варочная поверхность была предложена компанией AEG еще в 1987 г., но поначалу не нашла широкого применения, как из-за дороговизны, так и из-за настороженного отношения потребителей к новому принципу нагрева. Распространение индукционных кухонных приборов пошло через профессиональные каналы: ресторанный бизнес предъявлял высокие требования к качеству и скорости приготовления пищи, и затраты на приобретение столь дорогостоящего оборудования здесь были оправданы.

А затраты действительно были немалыми: первые индукционные варочные панели были в несколько раз дороже, чем стеклокерамические, при том, что в них использовалось одно и то же стекло. Однако впоследствии индукционные приборы были значительно усовершенствованы, и сегодня их цена лишь ненамного превышает цену стеклокерамических варочных панелей.

Индукционные панели делают первые успешные шаги и на российском рынке, входя в ассортимент продукции практически всех ведущих производителей встраиваемой кухонной техники.

Энергия со дна посуды

В стеклокерамических плитах с обычной конфоркой (спиральной, ленточной или галогенной) тепло проходит следующий путь: вначале раскаляется нагревательный элемент конфорки, затем — зона нагрева стеклокерамического покрытия плиты, а уже от поверхности стекла нагревается дно посуды (рис. 6а). Индукционная технология нагрева отличается тем, что тепло возникает в самом дне посуды (рис. 6б). Откуда оно там берется?

Рис. 6. Различие между обычным (а) и индукционным (б) способами нагрева

Под стеклянным покрытием плиты находится медная катушка, по которой протекает высокочастотный электрический ток (рис. 7). По законам, открытым Фарадеем, магнитное поле этого тока, пронизывая дно посуды, наводит в нем — вы уже догадались — электрические токи. Дно кастрюли представляет собой не длинную проволоку, а диск, поэтому токи в нем ходят по кругу, а не текут «по струнке». Эти крутящиеся в дне кастрюли вихревые электрические токи и разогревают дно, а с ним и пищу (рис. 8).

Рис. 7. Индукционная конфорка

Рис. 8. Принцип индукционного нагрева

Есть только одно условие, которое должно в буквальном смысле «железно» соблюдаться: для того, чтобы индукционная конфорка работала, дно посуды должно быть выполнено из материала с четко выраженными ферромагнитными свойствами. Проверку материалов на наличие таких свойств производил в детстве любой из нас, когда получал в руки магнит: к одним предметам он не прилипал, к другим прилипал очень охотно: это и были ферромагнитные материалы. Под большим увеличением можно было бы разглядеть в срезе такого материала области естественной намагниченности (домены). В переменном магнитном поле происходит частая смена направления намагниченности этих областей, благодаря чему в днище посуды выделяется тепло: энергия магнитного поля переходит в тепловую (рис. 9).

Рис. 9. Доменная структура ферромагнитного дна посуды

Никакой передачи тепла через стеклокерамику при этом не происходит. Если по окончании готовки стекло и остается теплым, то только потому, что оно нагрелось от дна кастрюли, а не наоборот. Можно проделать интересный опыт, проложив между стеклом и посудой лист бумаги: яичница поджарится, а бумага не сгорит (рис. 10). Наиболее эффектный вариант этого опыта, который показывают некоторые демонстраторы бытовой техники, выполняется с денежной купюрой. Попробуйте сами!