Рис.3. Влияние соотношении наполнителей на свойства композиций. 1.30% стекловолокна; 2. 15% стекловолокна + 15% слюды; 3.30% слюды.
При этом возможно получить материалы с достаточно высокими механическими свойствами и низким короблением.
Таким образом, благодаря реализации на практике химического связывания полимер - поверхность волокнистого наполнителя создан ПА усиленный стекло- и углеволокнами с высоким уровнем механических свойств.
В работе [16] объектами исследования являлись ПА 6 и ряд полимеров с реакцонноспособными группами:
- этиленпропиленовые каучуки (ЭПК) - бутадиен-акрилонитрильные каучуки (СКН)
- сополимеры этилена и винилацетат (СЭВИЛЕН)
В ряде случаев для сравнения использовали композиции ПА 6 с аналогичными полимерами без функциональных групп. Совмещение компонентов проводили на лабораторном двухшнековом экструдере с диаметром шнека 30 мм, l/d = 25.
Исследование механичеких свойств осуществляли в соответствии с ГОСТ на стандартных образцах, полученных литьем под давлением.
Теплофизические свойства изучали методом ДСК при скорости нагрева 20 град/мин с использованием термоанализатора 990 ф. Дюпон. Кинетику поглощения бензина и воды осуществляли на дисках 50х2 мм.
С повышением содержания ЭПК в композиции ударная вязкость и относительное удлинение при разрыве возрастают, а прочность и модуль упругости при изгибе падают (рис 1). Из приведенных данных следует, что выбор материала и повышенным значением ударной вязкости определяется допустимым снижением упруго-прочностных свойств материала.
В рассматриваемой системе взаимодействие полимеров благодаря наличию функциональных групп протекает как процесс прививки дисперсной фазы к матрице ПА.
Свойства такой системы будут определяться степенью диспергирования эластомера и, следовательно, зависят от содержания реакционноспособных групп. На примере ЭПК показано, что имеется оптимум содержания функциональных групп (рис. 2). Образование привитого макрополимера между ПА6 и ЭПК подтверждается данными ДСК (рис 4). Как видно из рисунка, в отличии от чисто механической смеси, на термограмме ПА6 с модифицированным эластомером появляется дополнительный пик, при этом с увеличением содержания эластомера площадь пика увеличивается, и он смещается в область низких температур.
Рис.4. Зависимость физико-механических свойств ПА 6 от содержания ЭПК (σт – предел текучести при растяжении, ат – ударная вязкость по Шарпи на образцах с надрезом, Еизг – модуль упругости при изгибе, εр – относительное удлинение при разрыве).
Рис. 5. Зависимость ударной вязкости образцов с надрезом от содержания ЭПК и функциональных групп в нем.
Рис.6. Термограмма ДСК ПА6, ЭПК и различных смесей на их основе.
В настоящее время НПП «ПОЛИПЛАСТИК» выпускает марки ударопрочных, морозостоких композиций: АРМАМИД ПА6-1УП, 2УП. Они отличаются повышенной величиной ударной вязкости при сохранении высоких значений модуля (таблица. 1). Кроме этого они имеют хорошие диэлектрические показатели и пониженное водопоглощение по сравнению с ПА 6.
Таблица 3
Свойства ударопрочных, эластифицированных марок на основе полиамида 6 (для сухих образцов).
Наряду с ударопрочными композициями на основе ПА 6, производятся эластфицированные марки АРМАМИД ПА 6-2Э.3Э (табл. 3). Данные материалы отличаются улучшенной эластичностью пониженными значениями модулей и прочностных показателей. Ударная вязкость указаных материалов несколько ниже предыдущей серии материалов, однако они имеют повышенную масло - и бензостойкость. Проводятся работы в направлении получения материалов с повышенной эластичностью и бензо- маслостойкостью, перерабатываемые методом зкструзии.
Области применения модифицированных ПА чрезвычайно разнообразны, их используют в автомобилестроении (кнопки крепления обивки, ремешки-держатели электропроводки, трубки подачи топлива и масла и т.д.), для изготовления спортивного инвентаря, для оснастки строительного инструмента, в бытовой техники и т.д.
Современные конструкционные полимерные материалы, разрабатываемые НПП «ПОЛИПЛАСТИК», имеют, как правило многокомпонентный состав, включающий армирующие и дисперсионные наполнители, а также ряд функциональных органических добавок, часть из которых при температурах переработки находится в состоянии низковязких жидкостей.
Сложной технологической проблемой является получение однородной смеси многокомпонентных материалов, которая обычно решается путем смещения в двухшнековом экструдере. Как правило, подобным путем решается задача получения термопластов. армированных стекло- и углеволокнами. В то же время, проблема равномерного распределения по конечному образцу, как твердых, так и, особенно жидких, не совмещающихся с полимерной матрицей, функциональных добавок, гораздо более сложна [17, 18], поскольку при заполнении прессформы наблюдается значительный температурный градиент влияющий на распределение по поверхности образца каждого из компонентов. Особенный интерес заключался в установлении факта возможного изменения характера распределения компонентов не только по поверхности, но и по толщине образца.
Для выполнения поставленной задачи, в рассмотренной работе [19] были исследованы свойства поверхности четырех стеклонаполненных композиционных материалов на основе ПА-6, содержащих дополнительно твердый минеральный наполнитель, добавку эластомера и кремнийорганический модификатор. Для сравнения был исследован также образец ПА-6.
Полученные в проделанной работе данные свидетельствуют о наличии существенного градиента при удалении от литника химического состава и свойств наружных поверхностных слоёв литьевых образцов стеклонаполненных полиамидов в зависимости от компонентного состава и природы добавок.
Значительный интерес представляют полученные данные для понимания характера формирования наружных и подповерхностных слоев. Наружные поверхностные слои обогащены полимером, плавкими добавками имеющими к тому же более низкую поверхностную энергию по сравнению с полиамидом и стекловолокном. Это приводит к тому, что микротвердость наружных поверхностных слоев при удалении от литника снижается. В подповерхностных слоях, вероятно, реализуется иной механизм распределения компонентов, что приводит к более высокой твердости образцов по мере удаления от литника.
Полученные результаты дают представление о сложных процессах формирования поверхностных и подповерхностных сдоев наполненных полимеров. что особенно важно при изготовлении ответственных изделий радио-, электро-, приборной и других отраслей промышленности.
Целью работы [20] является экспериментальное изучение изменения показателей кратковременной прочности дисперсно армированного материала на примере стеклонаполненного полиамида марки ПА6-211ДС при старении в холодном климате и в условиях термоциклических воздействий; анализ и интерпретация результатов испытаний и механизмов повреждающего воздействия климатических факторов и апробация математической экстраполяционной модели прогнозирования.
Механические характеристики материала (разрушающее напряжение при растяжении и изгибе) определялись при нормальных и низких температурах на стандартных образцах (тип 2 - по ГОСТ 11262-80), изготовленных методом литья пол давлением, в исходном состоянии, после термоциклирования, после старения в условиях открытой экспозиции и в неотапливаемом складе. Испытания проводились на разрывной машине FР-10 при скорости перемещения траверсы нагружающего устройства 5мм/мин.
Для оценки размера зоны пластической деформации были проведены эксперименты по определению трещиностойкости ПА6-211ДС через критический коэффициент интенсивности напряжений КIC [21]. Образцы материала вырезались из плит, изготовленных литьем под давлением, размером 40х25х10мм. Затем на образцы наносились надрезы различной длины (10;14мм) по методике работы. Испытания проводились на внецентренное растяжение по схеме двойной консольной балки (ДКБ) [22].
Механические испытания на растяжение проводили на разрывной машине FР-10 при скорости перемещения траверсы 0,5мм/мин и температурах +20°С и -60°С. Влагонасыщение части образцов до стационарного уровня (6,5%) осуществляли в дистиллированной воде при температуре +60°С.
Морфологические особенности структуры образцов на поверхности низкотемпературного скола и на поверхности разрушения при растяжении при температурах испытания +20°С и -60°С исследовали методом электронной сканирующей микроскопии.
При анализе данных в отличие от имеющихся данных по старению материалов на основе термопластов [23, 24] обнаруживаются следующие особенности.
1. Явно выраженного хрупко-вязкого перехода (ХВП), сопровождающегося резким падением прочности образца в температурном диапазоне испытаний материала не наблюдается. Согласно [21] ХВП на температурной зависимости прочности образцов после различных сроков натурной экспозиции появляется в результате неоднородного развития поврежденности по объему образца с образованием на его поверхности "охрупченного" слоя. При низкотемпературных испытаниях на прочность "быстрые" трещины, возникающие в хрупком поверхностном слое, способны распространяться в слои основного материала, неповрежденного старением, и приводить к квазихрупкому разрушению образца. Повышение температуры испытаний приводит к увеличению вязкости разрушения основного материала и в конечном итоге к торможению трещины на границе раздела поверхностный слой - основной материал, и к смене механизма разрушения образца от квазихрупкого к вязкому. Граничная температура ХВП определяется в рамках положений линейной механики разрушения согласно [21]. Она зависит от размеров поперечного сечения образца и величины зоны пластической (необратимой) деформации в вершине надреза-трещины для конкретного материала, которая в свою очередь зависит от температуры испытаний и скорости трещины на границе раздела.