Смекни!
smekni.com

Установка ПГУ-325 (стр. 6 из 13)

1) Обеспечивать качественную вальцовку труб (диаметр отверстий под трубы в промежуточных перегородках не должен превышать чертежных размеров, промежуточные перегородки должны быть смещены вверх для придания трубе должного изгиба, при разрушении периферийных труб рекомендуется увеличить толщину их стенок);

2) Производить отжиг труб для снятия остаточных напряжений;

3) Выполнять при необходимости ужесточение труб путем их расклинивания (для предотвращения клиньев при работе их крепят между собой проволокой).

Коррозионные разрушения могут быть с водяной и паровой сторон. С водяной стороны может происходить обесцинкования металла труб (сплошное, местное, межкристаллическое или пробочного типа).

При обесцинковании растворимые соединения цинка уносятся охлаждающей водой, частицы красной меди оседают на стенке, которая приобретает красную пористую губчатую структуру с малой механической прочностью.

Для предотвращения обесцинкования при замене труб необходимо обратить особое внимание на правильность подбора материала труб (латунь с присадкой мышьяка, сплавы МНЖ). Отжиг труб оказывает благоприятное влияние на коррозионную стойкость.


5 Методы выявления не плотностей вакуумной системы конденсационной установки при работе турбины

В установках с пароструйными эжекторами присосы воздуха определяются с помощью дроссельных воздухомеров, установленных на выхлопе этих эжекторов. Присосы воздуха в установках с водоструйными эжекторами могут быть найдены путем искусственного ввода воздуха через систему сменных калиброванных сопел (метод ВТИ). Кроме того, находит применение способ оценки воздушной плотности вакуумной системы турбины по скорости падения вакуума при кратковременном закрытии задвижки на линии отсоса паровоздушной смеси из конденсатора к эжекторам с последующим открытием ее.

Разделив значение вакуума (мм рт.ст.) на время закрытия задвижки, получим скорость падения вакуума.

При скорости 1-2-мм рт.ст./мин плотность вакуумной системы считается хорошей, при 3-4 мм рт.ст./мин – удовлетворительной.

Но этот способ не дает абсолютной величины присосов воздуха. Нормативное значение присосов воздуха в вакуумную систему турбин указано в ПТЭ.

Конкретные места присосов воздуха выявляются различными способами. На работающей турбине источники присосов могут быть определены с помощью течеискателей. Применяются следующие типы галоидных течеискателей: ГТИ-3 - при пароструйных, ВАГТИ-4 – при водоструйных эжекторах, ГТИ-6 – при обоих типах эжекторов.

Проверяемые на плотность места вакуумной системы обдуваются снаружи парами галоидов (обычно фре оном–12) из переносного баллончика оборудованного вентилем с обдувателем на конце гибкого шланга. Проникающие через не плотности вакуумной системы пара фре она вместе с движущейся рабочей средой поступает в конденсатор турбины и оттуда через трубопроводы отсоса неконденсирующихся газов отсасываются эжекторами. В установках с пароструйными эжекторами датчик устанавливается на выхлопе эжектора. Действие датчика основано на явлении и миссии положительных ионов из платины, нагретой до температуры 900°С. В присутствии галоидосодержащих веществ эмиссия резко увеличивается, что приводит к возрастанию силы тока в элекрической схеме прибора. Увеличение тока фиксируется отклонением стрелки амперметра, изменением светового и звукового сигналов.

Методы выявления не плотностей с помощью галоидного течеискателя позволяют выявить как крупные, так и мелкие источники присосов. Для этих целей может быть использован также ультразвуковой течеискатель ТУЗ-5М.

Принцип действия такого течеискателя основан на фиксировании колебаний ультразвуковой частоты 32-40 кГц, которые возникают при столкновении проникающего через не плотности воздуха с потоком рабочей среды, движущейся в трубопроводе, аппарате и т.п.

Выявление участков вакуумной схемы имеющих не плотности, может быть выполнена также путем изменения режима работы турбинной установки или отдельных ее элементов (увеличения или уменьшения давления в них, закрытия арматуры отсосов воздуха в конденсатор и т.д.). О наличии присосов судят по изменению расхода воздуха через воздухомеры эжекторов (или по изменению вакуума). Так, присосы в вакуумные ПНД могут быть определены путем кратковременного поочередного закрытия арматуры (где она имеется) на линиях отсосов неконденсирующихся газов из них. Таким же путем определяются присосы в систему отсоса уплотнения турбин и сальникового подогревателя.

Присосы в сбросные трубопроводы БРОУ, в систему дренажей, в элементы пусковой схемы могут быть определены путем создания на этих участках более высокого давления. Уменьшение присосов при снижении вакуума свидетельствует о преобладающем количестве их в районе конденсатора – ЦНД, увеличение при снижении нагрузки турбины – о расположении их в местах, находящихся при номинальной нагрузке под давлением. Некоторые места присосов могут быть выявлены по шуму «на слух» при обходе оборудования

Существует и старый способ обнаружения их по отклонению пламени горящей свечи, однако вблизи генераторов с водородным охлаждением он не может быть применен по соображениям пожарной безопасности.

Присосы воздуха в вакуумную систему турбоустановки слабо влияют на эффективность работы конденсационной установки, если количество воздуха, удаляемого из конденсатора воздухо-удаляющими устройствами, находиться в пределах значений, допускаемых согласно ПТЭ, и запас в рабочей подаче воздухо-удаляющих устройств, комплектующих данную турбоустановку, удовлетворяет рекомендациям теплового расчета конденсаторов. Это не исключает, однако, необходимости периодического контроля за воздушной плотностью вакуумной системы турбоустановки для своевременного принятия мер, необходимых для поддержания присосов воздуха в допустимых пределах. Для борьбы с этим видом коррозии необходимо снизить скорость охлаждающей воды в трубе, добиться уменьшения содержания взвешенных частиц путем очистки циркуляционной системы от отложений, а также снижения воздухо содержания охлаждающей воды.

Коррозионные разрушения с паровой стороны вызываются присутствием в паре аммиака, кислорода, углекислого газа. Аммиачной коррозии подвержена в основном зона воздухоохладителя. Коррозия протекает в среде влажного пара. При повышенных присосах воздуха в вакуумную систему коррозия усиливается. Для предотвращения коррозионных разрушений этого вида трубы воздухоохладительных пучков выполняют из мельхиора или нержавеющей стали.

Если в процессе эксплуатации имело место частое повреждение труб, должны быть выявлены причины этих повреждений. Отыскание дефектных труб производят после дренирования камер охлаждающей воды соответствующей половины конденсатора и вскрытия люков. Струйная коррозия приводит к разрушению входных участков труб на длине 150-200 мм с образованием в них шероховатности и сквозных язв. Появлению коррозии способствуют местные неравномерности скоростей охлаждающей воды, наличие в воде пузырьков воздуха.

6. Способы очистки конденсаторных труб от отложений

На работу трубной системы конденсатора определенное влияние оказывает загрязнение труб и применяемые методы их очистки.

Загрязнение внутренней поверхности труб конденсатора – одна из основных причин ухудшения вакуума. Появление слоя отложений приводит к ухудшению теплоотдачи из-за роста термического сопротивления и уменьшения сечения трубок, растет гидравлическое сопротивление конденсатора, что приводит к сокращению расхода охлаждающей воды.

Отложения могут быть условно разделены на несколько групп:

1) Карбонатные отложения (накипь, образуемые из-за выпадения солей жесткости из охлаждающей воды при нагреве её. Отложения образуют плотный и прочный слой;

2) Органические отложения, вызываемые микроорганизмами и водорослями, присутствующими в охлаждающей воде. Отложения имеют характер скользкой слизистой пленки на внутренней поверхности труб;

3) Насосные отложения, состоящие из песка, глины, ила, продуктов коррозии металла. Как правило, они удаляются сравнительно легко механическим или гидравлическим способом;

4) Смешанные отложения, представляющие собой комбинации вышеперечисленных видов отложений.

Для поддержания трубных систем конденсаторов в чистом состоянии проводятся профилактические мероприятия по предотвращению образования отложений, а также периодические очистки на работающей или остановленной турбине.

Очистка конденсаторов турбин от внутренних отложений связана с большими трудозатратами. Кроме того, понижается надежность работы конденсаторов из-за возможных повреждений труб. Поэтому в процессе эксплуатации должны быть приняты все меры по предотвращению загрязнений конденсаторов.

Для предотвращения накипеобразования, имеющего место из-за накопления солей жесткости в воде при испарении части ее в градирнях и брызгальных бассейнах рекомендуется продувка оборотных систем водоснабжения, водообмен водохранилищ, обработка воды кислотой и дымовыми газами, фосфатирование, комбинированные способы.

Для предотвращения образования мягких насосных отложений применяются периодическое увеличение скорости охлаждающей воды и непрерывная очистка конденсаторов резиновыми шариками.

Для предотвращения образования накипи применяются также физические способы – обработка воды магнитным полем и с помощью ультразвука.Для выбора способов предотвращения загрязнений конденсатора и способа очистки его производится осмотр трубной системы. Отбирается проба отложений путем соскабливания их с труб или проталкивание через трубу в шомпола с резиновым наконечником.

Анализ отобранных отложений в сочетании с исследованием систем водоснабжения позволит определить оптимальные способы очистки.