Курсовая работа
"Расчёт устойчивости прямоугольных пластин судового корпуса"
№п/п | Размер пластины (a), м | Размер пластины (b), м | Модуль упругости материалаЕ ·103МПа | Толщина пластины (h), м |
19 | 1.90 | 1,30 | 210 | 0.020 |
Дифференциальное уравнение нейтрального равновесия прямоугольной пластины, сжатой в двух взаимно перпендикулярных направлениях (1), (2)
Начнем изучение устойчивости пластин со случая, когда на свободно опертую прямоугольную пластину действуют сжимающие напряжения в двух взаимно перпендикулярных направлениях (рис.1).
Рис.1
Пусть σ1 - абсолютная величина сжимающего напряжения, действующего в направлении оси ох; σ2-абсолютная величина сжимающего напряжения, действующего в направлении оси оу; "а" и "b"-размеры пластины в плане; "h"-толщина пластины.
Тогда дифференциальное уравнение нейтрального равновесия рассматриваемой пластины будет:
Задание формы упругой поверхности свободно опертой пластины при потере устойчивости в виде двойного тригонометрического ряда (3)
Упругая поверхность свободно опертой пластины при потере устойчивости в самом общем виде может быть представлена тригонометрическим рядом:
(3)Граничные условия на кромках рассматриваемой прямоугольной свободно опёртой по контуру пластины (4)
Каждый член ряда (3) удовлетворяет граничным условиям на контуре рассматриваемой пластины, т.е. условиям равенства нулю в точках на контуре величины прогиба пластины и изгибающих моментов:
(4)Уравнение, устанавливающее сочетание нагрузок Т1 и Т2, при котором свободно опёртая по контуру прямоугольная пластина может потерять устойчивость (8)
Подставляя формулу (3) в дифференциальное уравнение (1), Получим
или
(5)Рассматриваемая пластина может потерять устойчивость при таком сочетании нагрузок Т1 и Т2, при котором какая-либо из скобок, входящих в выражение (5), обратится в нуль.
При этом соответствующее Аmn может стать отличным от нуля и форма потери устойчивости пластины будет
(6)Таким образом, эйлерово сочетание нагрузок Т1 и Т2 определится из условия:
Учитывая обозначения (2), получим
(7)Или
(8)Устойчивость прямоугольной свободно опёртой по контуру пластины, одинаково сжатой в обоих направлениях. (11)
Для дальнейшего исследования полезно выражение (7) переписать следующим образом:
(9)При различных комбинациях чисел "m" и "n" мы имеем, на основании выражения (9) линейную зависимость между напряжениями σ1 и σ2.
Будем откладывать на оси абсцисс некоторой системы координатных осей напряжение σ1, а на оси ординат-напряжение σ2 (рис.2). Тогда любой точке плоскости будет соответствовать некоторая комбинация напряжений σ1 и σ2
Рис.2Рассматривая пластину с определенным отношением сторон а: b, можем, задаваясь различными "m" и "n", построить ряд прямых по уравнениям (9). Область тех напряжений, при которых пластина не теряет устойчивости, будет ограничена ближайшими к началу координат участками всех построенных прямых различных "m" и "n".
Легко убедиться, что для определения этих участков нужно построить лишь прямые, соответствующие различным "m" при n=1 и различным "n" при m=1.
Если σ1=σ2., т.е. пластина одинаково сжата в обоих направлениях, то на основании выражения (9) получим
σ1=σ2 (10)
Правая часть формулы (10) растет при увеличении чисел "m" и "n". Поэтому в таком случае для разыскания эйлеровых значений сжимающих напряжений следует в формуле (10) положить m = n =1. Тогда получим
(11)где
- цилиндрическая жесткость пластины.Следовательно, одинаково сжатая в двух пластина теряет устойчивость с образованием одной полуволны независимо от величины отношения а: b.
Расчёт эйлеровых значений сжимающих усилий прямоугольной свободно опёртой по контуру пластины, одинаково сжатой в обоих направлениях.
Устойчивость прямоугольной свободно опёртой по контуру пластины, сжатой в одном направлении вдоль длинной стороны пластины. (12)
Если пластина сжата лишь в одном направлении, то ее эйлерову нагрузку можно найти из общих зависимостей предыдущего параграфа, положив в них σ2=0. На основании формулы (9) получим
(12)Установление числа полуволн формы потери устойчивости прямоугольной свободно опёртой по контуру пластины, сжатой в одном направлении вдоль длинной стороны (15).
Число полуволн "m", образующихся вдоль направления сжатия при потере устойчивости пластины, будет зависеть от отношения а: b.
Действительно, каждому отношению а: b должно соответствовать определенное число "m", при подстановке которого в формулу скобка, входящая в ее правую часть, будет принимать наименьшее значение.
(13)Это число "m" должно, очевидно, удовлетворять тому условию, при котором при подстановке в правую часть формулы вместо m величины (m+ 1) и (m - 1) значение скобки будет увеличиваться. Это условие запишется в виде:
(14)Из выражения (15) можно получить:
(15)Последние неравенства показывают, что на длине пластины образуется следующее число полуволн:
Расчёт эйлеровых значений сжимающих усилий прямоугольной свободно опёртой по контуру пластины, сжатой вдоль короткой стороны опорного контура (16)
Для стальной пластины с параметрами Е=2,15*106 кг/см2; μ=0,3, сжатой вдоль короткой стороны опорного контура, эйлерово напряжение определяется:
(16)Для определения эйлерова напряжения пластины с параметрами Е=210·103 МПа = 2,1·106 кг/см2и μ=0,3 вдоль короткой стороны необходимо формулу (21) домножить на Е/Ест, тогда:
Расчёт эйлеровых значений сжимающих усилий прямоугольной свободно опёртой по контуру пластины, сжатой вдоль длинной стороны опорного контура (17)
Для стальной пластины с параметрами Е=2,15*106 кг/см2; μ=0,3, сжатой вдоль длинной стороны опорного контура, эйлерово напряжение определяется:
(17)Для определения эйлерова напряжения пластины с параметрами Е=210·103 МПа = 2,1·106 кг/см2и μ=0,3 вдоль длинной стороны необходимо формулу (21) домножить на Е/Ест, тогда:
Устойчивость пластин, свободно опертых по двум кромкам. Решение в виде ординарного тригонометрического ряда. Расчётная схема (рис.3)
Рис.3Решение для упругой поверхности пластины, у которой кромки х = const свободно оперты на жесткий контур (18)
Рассмотрим пластину, у которой кромки х = const свободно оперты на жесткий контур, и загруженную сжимающими усилиями в направлении оси ох. Решение для упругой поверхности такой пластины можно искать в виде ординарного тригонометрического ряда: