Смекни!
smekni.com

Устойчивость прямоугольных пластин судового корпуса (стр. 1 из 2)

Курсовая работа

"Расчёт устойчивости прямоугольных пластин судового корпуса"

Исходные данные

№п/п Размер пластины (a), м Размер пластины (b), м Модуль упругости материалаЕ ·103МПа Толщина пластины (h), м
19 1.90 1,30 210 0.020

Дифференциальное уравнение нейтрального равновесия прямоугольной пластины, сжатой в двух взаимно перпендикулярных направлениях (1), (2)

Начнем изучение устойчивости пластин со случая, когда на свободно опертую прямоугольную пластину действуют сжимающие напряжения в двух взаимно перпендикулярных направлениях (рис.1).

Рис.1

Пусть σ1 - абсолютная величина сжимающего напряжения, действующего в направлении оси ох; σ2-абсолютная величина сжимающего напряжения, действующего в направлении оси оу; "а" и "b"-размеры пластины в плане; "h"-толщина пластины.

Тогда дифференциальное уравнение нейтрального равновесия рассматриваемой пластины будет:


(1)

(2)

Задание формы упругой поверхности свободно опертой пластины при потере устойчивости в виде двойного тригонометрического ряда (3)

Упругая поверхность свободно опертой пластины при потере устойчивости в самом общем виде может быть представлена тригонометрическим рядом:

(3)

Граничные условия на кромках рассматриваемой прямоугольной свободно опёртой по контуру пластины (4)

Каждый член ряда (3) удовлетворяет граничным условиям на контуре рассматриваемой пластины, т.е. условиям равенства нулю в точках на контуре величины прогиба пластины и изгибающих моментов:

(4)

Уравнение, устанавливающее сочетание нагрузок Т1 и Т2, при котором свободно опёртая по контуру прямоугольная пластина может потерять устойчивость (8)

Подставляя формулу (3) в дифференциальное уравнение (1), Получим


или

(5)

Рассматриваемая пластина может потерять устойчивость при таком сочетании нагрузок Т1 и Т2, при котором какая-либо из скобок, входящих в выражение (5), обратится в нуль.

При этом соответствующее Аmn может стать отличным от нуля и форма потери устойчивости пластины будет

(6)

Таким образом, эйлерово сочетание нагрузок Т1 и Т2 определится из условия:

Учитывая обозначения (2), получим

(7)

Или

(8)

Устойчивость прямоугольной свободно опёртой по контуру пластины, одинаково сжатой в обоих направлениях. (11)

Для дальнейшего исследования полезно выражение (7) переписать следующим образом:

(9)

При различных комбинациях чисел "m" и "n" мы имеем, на основании выражения (9) линейную зависимость между напряжениями σ1 и σ2.

Будем откладывать на оси абсцисс некоторой системы координатных осей напряжение σ1, а на оси ординат-напряжение σ2 (рис.2). Тогда любой точке плоскости будет соответствовать некоторая комбинация напряжений σ1 и σ2

Рис.2

Рассматривая пластину с определенным отношением сторон а: b, можем, задаваясь различными "m" и "n", построить ряд прямых по уравнениям (9). Область тех напряжений, при которых пластина не теряет устойчивости, будет ограничена ближайшими к началу координат участками всех построенных прямых различных "m" и "n".

Легко убедиться, что для определения этих участков нужно построить лишь прямые, соответствующие различным "m" при n=1 и различным "n" при m=1.

Если σ12., т.е. пластина одинаково сжата в обоих направлениях, то на основании выражения (9) получим

σ12

(10)

Правая часть формулы (10) растет при увеличении чисел "m" и "n". Поэтому в таком случае для разыскания эйлеровых значений сжимающих напряжений следует в формуле (10) положить m = n =1. Тогда получим

(11)

где

- цилиндрическая жесткость пластины.

Следовательно, одинаково сжатая в двух пластина теряет устойчивость с образованием одной полуволны независимо от величины отношения а: b.

Расчёт эйлеровых значений сжимающих усилий прямоугольной свободно опёртой по контуру пластины, одинаково сжатой в обоих направлениях.

Устойчивость прямоугольной свободно опёртой по контуру пластины, сжатой в одном направлении вдоль длинной стороны пластины. (12)

Если пластина сжата лишь в одном направлении, то ее эйлерову нагрузку можно найти из общих зависимостей предыдущего параграфа, положив в них σ2=0. На основании формулы (9) получим

(12)

Установление числа полуволн формы потери устойчивости прямоугольной свободно опёртой по контуру пластины, сжатой в одном направлении вдоль длинной стороны (15).

Число полуволн "m", образующихся вдоль направления сжатия при потере устойчивости пластины, будет зависеть от отношения а: b.

Действительно, каждому отношению а: b должно соответствовать определенное число "m", при подстановке которого в формулу скобка, входящая в ее правую часть, будет принимать наименьшее значение.

(13)

Это число "m" должно, очевидно, удовлетворять тому условию, при котором при подстановке в правую часть формулы вместо m величины (m+ 1) и (m - 1) значение скобки будет увеличиваться. Это условие запишется в виде:

(14)

Из выражения (15) можно получить:

(15)

Последние неравенства показывают, что на длине пластины образуется следующее число полуволн:

Расчёт эйлеровых значений сжимающих усилий прямоугольной свободно опёртой по контуру пластины, сжатой вдоль короткой стороны опорного контура (16)

Для стальной пластины с параметрами Е=2,15*106 кг/см2; μ=0,3, сжатой вдоль короткой стороны опорного контура, эйлерово напряжение определяется:

(16)

Для определения эйлерова напряжения пластины с параметрами Е=210·103 МПа = 2,1·106 кг/см2и μ=0,3 вдоль короткой стороны необходимо формулу (21) домножить на Е/Ест, тогда:


Расчёт эйлеровых значений сжимающих усилий прямоугольной свободно опёртой по контуру пластины, сжатой вдоль длинной стороны опорного контура (17)

Для стальной пластины с параметрами Е=2,15*106 кг/см2; μ=0,3, сжатой вдоль длинной стороны опорного контура, эйлерово напряжение определяется:

(17)

Для определения эйлерова напряжения пластины с параметрами Е=210·103 МПа = 2,1·106 кг/см2и μ=0,3 вдоль длинной стороны необходимо формулу (21) домножить на Е/Ест, тогда:

Устойчивость пластин, свободно опертых по двум кромкам. Решение в виде ординарного тригонометрического ряда. Расчётная схема (рис.3)

Рис.3

Решение для упругой поверхности пластины, у которой кромки х = const свободно оперты на жесткий контур (18)

Рассмотрим пластину, у которой кромки х = const свободно оперты на жесткий контур, и загруженную сжимающими усилиями в направлении оси ох. Решение для упругой поверхности такой пластины можно искать в виде ординарного тригонометрического ряда: