Смекни!
smekni.com

Устойчивость систем автоматического управления (стр. 3 из 6)

Выражение (5) называется кривой Михайлова и обычно обозначается D(jw) = A(jw). Каждый сомножитель выражения (5) отображается на комплексной плоскости вектором, конец которого лежит на мнимой оси (рис.4).

В основу критерия Михайлова положен принцип аргумента: произведение комплексных чисел имеет аргумент, равный сумме аргументов всех его сомножителей.

В нашем случае при изменении wот -¥ до + ¥ векторы сомножителей (jw - pi), i = 1,n, поворачиваются на угол p (5). Если корни лежат в левой части полуплоскости, то изменение угла будет положительным, если в правой, то отрицательным. Вектор (jw - pi) поворачивается против часовой стрелки в левой полуплоскости и по часовой стрелке – в правой.

Запишем выражение (5) в показательной форме. Учтем, что

где

;

Тогда

(6)

Из (5) вытекает, что изменение аргумента вектора Михайлова D(jw) равно сумме изменений аргумента каждого сомножителя выражения (6), т.е.

Если все корни характеристического уравнения расположены слева от мнимой оси (т. е. система устойчива), то изменение аргумента каждого из сомножителей (jw - pi) при изменении wот –¥ до + ¥, равно +p, а изменение аргумента произведения всех сомножителей DargD(jw) = + pn.

Если хотя бы один корень будет расположен в правой полуплоскости (система неустойчива), то изменение аргумента вектора Михайлова DargD(jw) = + p(n – 2).

Заметим, что при изменении wот –¥ до + ¥ кривая Михайлова симметрична относительно оси абсцисс, что позволяет ограничиться изучением кривой в диапазоне изменения wот 0 до + ¥. Тогда условие устойчивости системы по Михайлову можно записать в виде

(7)

Годографы кривой Михайлова при изменении wот 0 до + ¥ для устойчивых систем при различных значениях nприведены на рис. 5.

В соответствии с (7) критерий Михайлова формулируется следующим образом: для того, чтобы замкнутая система была ус­тойчивой, необходимо и достаточно, чтобы при изменении wот 0 до + ¥ вектор Михайлова D(jw) повернулся на угол

.

Рассматривая расположение D(jw) на комплексной плоскости (рис.4), условие устойчивости можно сформулировать иначе: чтобы система была устойчива, необходимо и достаточно, чтобы годограф вектора D(jw) прошел на комплексной плоскости последовательно nквадрантов в положительном направлении (против часовой стрелки), не проходя через начало координат. Если годограф проходит через начало координат, то система находится на границе устойчивости. Расположение годографа на комплексной плоскости для различных систем иллюстрируется рис. 6.

Пример. Используя критерий Михайлова, оценить устойчивость системы стабилизации угла тангажа самолета и определить критическое значение передаточного числа ku.

Характеристическое уравнение замкнутой системы было получено выше и имеет вид

Сделаем замену s=jwи выделим вещественную и мнимую части

Построенная при заданных ранее параметрах системы кривая Михайлова имеет вид, показанный на рис.3.7.

Кривая начинается на вещественной положительной полуоси, проходит последовательно 4 квадранта и заканчивается в 4-м квадранте. Следовательно, при данных параметрах исследуемая система устойчива.

Для определения критического значения передаточного числа по углу тангажа составим систему уравнений

Из второго уравнения системы определяем частоту и подставив выражение для нее в первое уравнение, после преобразований получим квадратное уравнение относительно искомого значения передаточного числа

Полученное уравнение абсолютно идентично полученному при решении задачи по критерию Гурвица и результат таким же

Построение кривой Михайлова для систем высокого порядка может быть связано с громоздкими вычислениями и графическими построениями. В этих случаях может быть более просто оценить устойчивость по корням уравнений U(w)=0 и V(w)=0. Определим корни этих уравнений и расположим их на числовой оси

Корни вещественные и перемежаются между собой. Система стабилизации угла тангажа устойчива.


Критерий устойчивости Найквиста

Критерий устойчивости Найквиста позволяет судить об устойчивости замкнутой системы по виду АФЧХ разомкнутой системы.

Пусть передаточные функции разомкнутой и замкнутой системы имеют вид:

Введем функцию

( 3.17)

где D(s)- характеристический полином замкнутой системы. Перейдя к частотным представлениям, получим

(3.18)

Вектор N(jw) называется вектором Найквиста. Очевидно, что числитель и знаменатель этого вектора имеют один и тот же порядок n. При использовании критерия Найквиста следует различать два случая.

1). Разомкнутая система устойчива и ее характеристическое уравнение A(s)=0 имеет все корни в левой полуплоскости. Тогда при изменении частоты от 0 до ¥

(3.19)

Изменение аргумента вектора D(jw) в общем случае равно


(3.20)

где m- число корней уравнения D(s)=0, лежащих в правой полуплоскости.

Изменение аргумента вектора Найквиста будет

(3.21)

Если замкнутая система устойчива, то m=0 и

Так как при w®¥, W(jw)®0, то N(jw)®1. Рассмотрим рисунок 3.8а, на котором показана кривая Найквиста, которую описывает вектор Найквиста при изменении частоты от 0 до ¥. Нетрудно убедиться, что вектор Найквиста опишет угол, равный нулю только в случае, если его годограф не охватывает начало координат. Перенесем начало координат в точку с координатами (1,j0) (рис.3.9б). Можно убедиться, что изменение аргумента вектора Найквиста будет равно нулю если АФЧХ W(jw) разомкнутой системы не охватывает критическую точку с координатами (-1,j0).

Критерий Найквиста для рассматриваемого случая формулируется следующим образом.

Система автоматического управления, устойчивая в разомкнутом состоянии, будет устойчивой и в замкнутом состоянии, если АФЧХ W(jw) разомкнутой системы при изменении частоты от 0 до ¥ не охзватывает критическую точку с координатами (-1, j0).

Особенности возникают, если разомкнутая система нейтрально-устойчива, т.е.


где полином A1(s) имеет все корни в левой полуплоскости. При w=0 АФЧХ разомкнутой системы W(jw)=¥ и проследить поведение кривой АФЧХ в окрестности этой точки невозможно. При изменении частоты от -¥ до +¥ наблюдается движение корней вдоль мнимой оси снизу вверх и при w=0 происходит бесконечный разрыв.

При этом движении обойдем нулевой корень (рис.3.10) по полуокружности бесконечно малого радиуса r так, чтобы этот корень остался слева, т.е. искусственно отнесем его к левой полуплоскости.

При движении по этой полуокружности в положительном направлении независимая переменная изменяется по закону

где фаза j(w) изменяется от -p / 2 до +p / 2. Подставив это выражение в передаточную функцию вместо множителя s в знаменателе, получим

где R®¥при r®0 , а фаза j(w) изменяется от +p / 2 до -p / 2. Следовательно, в окрестности нулевого корня годограф W(jw) представляет собой часть окружности бесконечно большого радиуса, движение по которой происходит при увеличении частоты в отрицательном направлении.

Для оценки устойчивости замкнутой системы, если разомкнутая система нейтрально устойчива, необходимо АФЧХ W(jw) разомкнутой системы дополнить дугой бесконечно большого радиуса, начиная с меньших частот, в отрицательном направлении и для полученной замкнутой кривой воспользоваться критерием Найквиста для систем, устойчивых в разомкнутом состоянии.

2).Разомкнутая система неустойчива. В этом случае

где р- число корней характеристического уравнения разомкнутой системы, лежащих в правой полуплоскости.

Если замкнутая система устойчива, т.е. m=0, то

( 3.22)

т.е. АФЧХ разомкнутой системы охватывает критическую точку (-1,j0) в положительном направлении ровно p / 2 раз.

Система, неустойчивая в разомкнутом состоянии, будет устойчивой в замкнутом состоянии, если АФЧХ W(j сw) разомкнутой системы при изменении частоты от 0 до ¥ охватывает критическую точку (-1,j0) в положительном направлении ровно р/2 раз, где р- число правых полюсов разомкнутой системы.