Елабужский Филиал ГОУ ВПО Казанского Государственного Технического Университета им. А.Н. Туполева
Курсовая работа по дисциплине:
«Теория автоматического управления»
На тему:
«Устойчивость систем автоматического управления»
Выполнил: студент гр. 22308
Зиннатуллин А.Ф.
Проверил: Конюхов М.И.
Елабуга 2010
В данной работе было представлено устойчивость систем автоматического управления. Устойчивость считается важнейшим и обязательным понятием, так как только в устойчивой системе могут быть удовлетворены другие требования к качеству.
Устойчивость АСУ характеризует способность системы возвращаться в состояние равновесия после исчезновения внешних сил, которые вывели ее из этого состояния. Следовательно, только устойчивая система является работоспособной. Понятие "устойчивость" наглядно иллюстрирует рис. 1, на котором представлена физическая система шар – опорная поверхность. На рис. 1, а и б шар находится в положении равновесия. При отклонении от этого положения в любую сторону в первом случае (рис. 1,а) шар не может вернуться в исходное положение (неустойчивое равновесие), а во втором (рис. 1,б) – возвращается (устойчивое равновесие). Если опорная поверхность представляет собой горизонтальную плоскость, то шар движется по ней до тех пор, пока действует движущая сила Fди после ее исчезновения останавливается в любой точке на плоскости (безразличное равновесие). Такая система иногда называется нейтральной (рис. 1,в).
Рис. 1. Физическая система шар – опорная поверхность
Говорят, что система устойчива в малом, если констатируют лишь факт наличия области устойчивости, но не определяют каким-либо образом ее границы. Если границы устойчивости определены, т.е. границы области начальных отклонений, при которых система возвращается в состояние равновесия, известны (рис. 1,г), и выяснено, что реальные начальные отклонения принадлежат этой области, то система устойчива в большом. Когда система возвращается в состояние равновесия при любых начальных отклонениях, ее называют устойчивой в целом, т. е. в малом и большом.
Переходные процессы в АСУ.
В любой АСУ в результате воздействия возмущающих сил, с одной стороны, и восстанавливающего действия управляющего устройства, с другой, возникает переходный процесс: переход АСУ из одного состояния в другое. Рассмотрим различные типы переходного процесса.
Пусть АСУ описывается дифференциальным уравнением вида
(1)характеристическое уравнение, которого
имеет корни
Решение ДУ описывает переходной процесс y(t) характер которого определяется коэффициентом x. Возможное расположение корней характеристического уравнения на комплексной плоскости р при различных значениях x показано на рис. 2. Рассмотрим переходные процессы, соответствующие различным значениям x.
Рис. 2. Расположение корней характеристического уравнения
x<-1. Переходная функция h(t) при подаче на вход единичного ступенчатого сигнала имеет вид:
, при этом корни характеристического уравнения вещественные положительные (p1,2>0) и, следовательно, .В данном случае система не может восстановить равновесное состояние, значение управляемой координаты все больше отклоняется от заданного. Такой переходный процесс называется расходящимся монотонным (апериодическим) (рис. 3,а), а система неустойчивой (идет процесс накопления энергии из внешней среды).Рис. 3. Виды переходного процесса
-1<x<0. При этом
, а переходная функция имеет вид:где
, .Характеристики системы те же, что и в предыдущем случае, но переходный процесс колебательный (рис. 3,б).
0<x<1. Переходная функция h(t) та же, что и в случае II, но при
. При этом система возвращается в равновесное состояние, а значение управляемой координаты приближается к заданному. Такой переходный процесс называется сходящимся колебательным, а система устойчивой (происходит отдача энергии во внешнюю среду) (рис. 3,в).x>1. Переходная функция h(t) имеет тот же вид, что и в случае I, но
. Характеристика системы та же, что и в III случае, но переходный процесс монотонный (апериодический) (рис. 3,в). На этом же рисунке показана переходная функция при x=1, .x=0.
, , .В системе устанавливается периодическое движение, процесс называется колебательным незатухающим, система находится на границе устойчивости (рис.3,д). Она является замкнутой (консервативной), автономной от внешней среды.
Все рассмотренные колебания (И, III и V случаи) относятся к классу свободных, их параметры A и jзависят от начальных условий, т. е. от привнесенной энергии. Для случаев II и III функция
, где Т- период колебаний, и, следовательно, эти колебания непериодические. Периодические колебания наблюдаются только в случае V.Сопоставление корней характеристического уравнения на комплексной плоскости р с соответствующими переходными процессами (рис. 3) показывает, что линейная система восстанавливает равновесное состояние только тогда, когда корни характеристического уравнения расположены слева от мнимой оси.
В общем случае условие устойчивости АСУ имеет вид
где у(0) – начальное значение управляемой величины;
– установившееся отклонение управляемой величины или статическая ошибка (в случае астатической системы e = 0).Реальные системы всегда нелинейны, однако, если для анализа поведения системы можно произвести линеаризацию уравнений, то о ее устойчивости можно судить исходя из первого метода А.М. Ляпунова:
- Если характеристическое уравнение линеаризованной системы имеет все корни с отрицательными вещественными частями, то реальная система будет устойчива в малом.
- Если характеристическое уравнение линеаризованной системы имеет хотя бы один корень с положительной вещественной частью, то реальная система всегда неустойчива.
- Если характеристическое уравнение линеаризованной системы имеет хотя бы один нулевой корень или пару чисто мнимых корней, то поведение реальной системы не может определяться ее линеаризованным уравнением. В этом случае отброшенные при линеаризации уравнения члены высшего порядка малости определяют поведение системы и могут превратить ее как в устойчивую, так и в неустойчивую.
Таким образом, анализ устойчивости линеаризованной системы сводится к нахождению расположения корней на комплексной плоскости, которое однозначно определяется коэффициентами характеристического уравнения. Однако не всегда можно вычислить корни характеристического уравнения в аналитическом виде. В соответствии с теоремой Абеля, корни уравнения выше четвертого порядка в общем случае не могут быть найдены аналитически в принципе. Поэтому желательно иметь такие критерии, с помощью которых можно было судить об устойчивости системы непосредственно по коэффициентам характеристического уравнения, зависящих от параметров систем, и определять влияние изменяемых параметров на расположение корней характеристического уравнения на комплексной плоскости. Эти критерии называют критериями устойчивости и подразделяются на алгебраические и частотные.
Алгебраические критерии устойчивости
Необходимое условие устойчивости.Характеристическое уравнение системы после определения его корней может быть представлено в виде
Если система устойчива и все ее корни имеют отрицательные вещественные части, то после раскрытия скобок в последнем выражении получим характеристическое уравнение системы
,в котором все коэффициенты аi, i=1,2,...n, будут строго больше нуля.
Для устойчивости системы необходимо, но недостаточно, чтобы все коэффициенты ее характеристического уравнения были строго больше нуля.
Понятие недостаточности означает, что если какой-либо коэффициент характеристического уравнения системы меньше нуля или равен нулю, то система неустойчива, но положительность всех коэффициентов еще не означает, что система устойчива. Нужны дополнительные исследования