Смекни!
smekni.com

Устройство конденсатора (стр. 5 из 7)

76 - лакопленочные;

77 - поликарбонатные.

Третий элемент - порядковый номер конденсатора, присваиваемый при разработке.

Маркировка конденсаторов.

На конденсаторах достаточно большого размера обозначаются тип, номинальная емкость и допустимое отклонение емкости от номинальной в процентах, номинальное напряжение, маркировка завода изготовителя, месяц и год выпуска. Если конденсатор данного типа выпускаются только одного класса точности, то допуск не маркируют. На слюдяных и некоторых других конденсаторах указывают группу ТКЕ.

Для маркировки конденсаторов применяют обозначения установленные ГОСТ 11076-69 (СТ СЭВ 1810-79). В зависимости от размеров конденсатора применяются полные или сокращенные (кодированные) обозначения. Полное обозначение номинальной емкости должно состоять из значения номинальной емкости по ГОСТ 2519-67 и обозначения единицы измерения. Кодированное обозначение номинальной емкости должно состоять из трех или четырех знаков, включающих две или три цифры и букву. Буква код обозначает множитель, составляющей значение емкости. Латинскими или русскими буквами p или П, n или Н, m или М, m или И, F или Ф обозначаются множители 10-12, 10-9, 10-6, 10-3, 1 соответственно для значений емкости, выраженной в фарадах. Эти буквы используются в качестве запятых при указании дробных значений емкости. Например,

5.6 пФ - 5p6 или 5П6;

150 пФ - 150p (n15) или 150П (М15);

3.3 нФ - 3n3 или 3Н3;

2.2 мкФ - 2m2 или 2М2;

150 мкФ - 150m (m15) или 150М или И150

Кодированные обозначения допустимых отклонений емкости от номинальной приведены в таблице 1.

* Допустимые отклонения емкости, выраженные в пикофарадах, кодируются такими же буквами.

Полное обозначение номинального напряжения конденсатора составляется из значения номинального напряжения по ГОСТ 9665-77 и обозначения единицы измерения (V - для напряжения до 800 В, kV - для напряжений 1 кВ и выше). Кодированное обозначение номинального напряжения конденсаторов приведены в таблице 2.

Полные и кодированные обозначения групп по температурной стабильности емкости приведены в таблице 3. Для маркировки группы ТКЕ используется также цветной код - окраска корпуса в определенный цвет (таблица 3), а для маркировки допустимых изменений емкости при изменении температуры - цветной код в виде точки определенного цвета (таблица 4).

Для стеклокерамических конденсаторов +0.012-0.01 и ±0.01 соответственно.

Примечание:

1. Конденсаторы могут быть покрыты эмалью любого цвета с маркировкой буквами и цифрами или двумя рядом расположенными знаками (точки или полоски). При этом конденсаторы групп П100, П33, М47, М750, М1500 должны иметь цветной знак, соответствующий цвету покрытия конденсатора. Для других групп цвет первого знака должен соответствовать цвету покрытия, а второй - цвету, указанному в графе "цвет знака". В последнем случае площадь первого знака должна быть приблизительно в два раза больше площади второго.

2. Маркировочный знак на трубчатых конденсаторах помещается со стороны вывода внешнего электрода.

Кодированное обозначение номинальной емкости и допустимых отклонений емкости маркируют на конденсаторе одной строчкой без разделительных знаков. На малогабаритных конденсаторах обозначение допустимых отклонений емкости может быть в другой строке (под обозначением номинальной емкости). Кодированные обозначения других данных проставляются после буквы, обозначающей допустимые отклонения емкости, в порядке, установленном ГОСТ или ТУ на конкретные конденсаторы.

В последние годы на конденсаторы часто наносят кодированное значение даты изготовления. Эти обозначения располагаются после основного кода и могут состоять либо из двух букв латинского алфавита, либо из одной такой буквы и арабской цифры. Условные обозначения, присвоенные годам, приведены в таблице.


Микросхемах

2. Применение и эксплуатация

Эксплуатационные факторы и их воздействие

Эксплуатационная надежность конденсаторов в аппаратуре во многом определяется воздействием комплекса факторов, которые по своей природе можно разделить на следующие группы:

электрические нагрузки (напряжение, ток, реактивная мощность, частота переменного тока);

климатические нагрузки (температура и влажность окружающей среды, атмосферное давление, биологические факторы и т.д.)

механические нагрузки (вибрация, удары, постоянно действующее ускорение, акустические шумы);

радиационные воздействия (поток нейтронов, гамма-лучи, солнечная радиация и др.).

Под воздействием указанных факторов происходит изменение параметров конденсаторов. В зависимости от вида и длительности нагрузки уходы параметров складываются из обратимого (временного) и необратимого изменений.

Обратимые изменения параметров вызываются кратковременным воздействием нагрузок, не приводящих к изменению свойств конструкционных материалов и проявляющихся лишь в условиях воздействия нагрузок. После снятия нагрузки параметры конденсаторов, принимают значения, близкие к начальным.

Климатические нагрузки. Температура и влажность окружающей среды являются важнейшими факторами, влияющими на надежность, долговечность и сохраняемость конденсаторов. Длительное воздействие повышенной температуры вызывает старение диэлектрика, в результате чего параметры конденсаторов претерпевают необратимые изменения. Предельно допустимая температура для конденсаторов ограничивается заданием максимальной положительной температуры окружающей среды и величиной электрической нагрузки. Применение конденсаторов в условиях, превышающих эти ограничения, недопустимо, так как может вызвать резкое ухудшение параметров (снижение сопротивления изоляции и электрической прочности, уменьшение емкости, увеличение тока и тангенса угла потерь), нарушение герметичности спаев, ухудшение изоляционных и защитных свойств органических покрытий и заливочных материалов, а в ряде случаев может привести к полной потере работоспособности конденсаторов.

Наряду с внешней температурой на конденсаторы в составе аппаратуры может дополнительно воздействовать теплота, выделяемая другими сильно нагревающимися при работе аппаратуры изделиями (мощные генераторные и модуляторные лампы, резисторы и т.п.).

Тепловое воздействие на конденсаторы может быть как непрерывным, так и периодически изменяющимся. Резкое изменение температуры может вызвать механические напряжения в разнородных материалах, нарушение герметичности паяных соединений, появление трещин, зазоров в деталях конденсаторов.

У оксидных конденсаторов при низких температурах увеличивается тангенс угла потерь. Все типы оксидных конденсаторов с жидким или пастообразным электролитом при температурах ниже 60°С практически неработоспособны из-за резкого снижения емкости и увеличения тангенса угла потерь.

При эксплуатации конденсаторов в условиях сверхнизких температур (до минус 180° С) за счет повышения хрупкости ряда конструкционных материалов возможно ухудшение механической прочности конденсаторов.

С ростом температуры окружающей среды напряжение на конденсаторе должно снижаться. В условиях повышенной влажности на электрические характеристики конденсаторов влияет как пленка воды, образующаяся на поверхности (процесс адсорбции), так и внутреннее поглощение влаги диэлектриком (процесс сорбции). Для герметизированных конденсаторов характерны только адсорбционные процессы. У конденсаторов, не имеющих вакуум но плотной герметизации, возможно также внутреннее проникновение влаги.

Длительное воздействие повышенной влажности наиболее сильно сказывается на изменении параметров негерметизированных конденсаторов. Наименьшую влагостойкость имеют негерметизированные бумажные и металлобумажные, а также слюдяные спрессованные конденсаторы. Проникновение влаги внутрь конденсаторов снижает сопротивление изоляции (особенно при повышенных температурах) и электрическую прочность, увеличивает тангенс угла потерь и емкость. Особенно опасно для негерметизированных конденсаторов одновременное длительное воздействие повышенной влажности и электрической нагрузки. При этом у керамических конденсаторов с открытым междуэлектродным зазором возможно снижение сопротивления изоляции или электрический пробой за счет миграции ионов металла обкладок (особенно серебра) по торцу конденсатора, а у металлобумажных конденсаторов разрушение обкладок, за счет процессов электролиза. После пребывания конденсаторов в нормальных климатических условиях (особенно после подсушки) адсорбированная влага удаляется и герметизированные конденсаторы практически полностью восстанавливает свои параметры.

Кроме непосредственного влияния на электрические характеристики конденсаторов влага вызывает коррозию металлических деталей и контактной арматуры конденсаторов, облегчает условия развития различных плесневых грибков. Появление плесени может вызвать обесцвечивание и разрушение защитных покрытий и маркировки, ухудшение изоляционных свойств органических материалов, способствует образованию слоя влаги на конденсаторах.

В морских районах вредное влияние влаги усиливается за счет присутствия в атмосфере солей, входящих в состав морской воды, что увеличивает электропроводность увлажненных поверхностей, изоляционных материалов, облегчает условия электролиза и коррозии металлов.

В промышленных районах конденсируемая на поверхности конденсаторов влага может содержать растворы сернистых и других агрессивных соединений, усиливающих вредное действие влаги.