Смекни!
smekni.com

Участок по переработке лома твёрдых сплавов способом хлорирования (стр. 5 из 13)

При разработке схемы переработки сырья можно использовать гравитационное обогащение. Этот метод обогащения не даст хороших результатов по причине небольшой разности плотностей и небольшого количества примесей [6].

3.7. Выбор оборудования для предварительной обработки сырья.

Исходя из заданного состава компонентов, гранулометрического состава вторичного сырья и выбранного способа переработки, сырьё необходимо измельчить до размера до 1,0 мм, что обеспечит высокую скорость хлорирования. Для этого нужно провести дробление и измельчение на соответствующем оборудовании. Так же желательно провести обогащение исходного сырья. Обогащение позволит избежать ненужных отходов, сэкономит реактивы, энергию и упростит очистку продуктов.

Степень обогащения при использовании магнитной сепарации зависит от крупности частиц, для улучшения показателей обогащения, магнитную сепарацию нужно провести после измельчения исходного сырья.

Основной проблемой схемы предварительной обработки сырья является измельчение.

3.7.1. Одновальцовая дробилка CEB 16/40

Одновальцовая дробилка CEB 16/40 была разработана компанией NETZSCH-Group. Одна из областей её применения – дробление твёрдого сплава.

Принцип действия – простое разрушение. Данная модель со сверхтвердыми разрушающими элементами, служит для эффективного дробления.

Малые габариты способствуют установки в новую или существующую схему.

Таблица 3.7.1. Основные технические характеристики дробилки CEB 16/40.

Производительность по исходному твердому материалу 230 кг/ч
Диметр ротора 160 мм
Ширина входного отверстия 400 мм
Диапазон размола 4 - 12 мм
Номинальная мощность эл. привода не более 3 кВт

Принип работы одновальцовойая дробилки CEB.

Одновальцовойая дробилка CEB оборудована большим количеством зубьев, при медленном вращении которых между зубьями и широкими гребёнками создается огромное давление на продукт, что и приводит к его измельчению.

Заключительный размер частицы зависит от зазора между гребёнками и геометрией зубьев.

Измельченный продукт поднимается вертикально вверх со дна дробилки [8].

3.7.2. Молотковая мельница CHM 23/20

Молотковая мельница CHM 23/20 была разработана компанией NETZSCH-Group.

Одна из областей её применения – измельчение твёрдого сплава.

Принцип действия – ударно-отражательное измельчение. Данная модель со сверхтвердыми разрушающими элементами, служит для эффективного измельчения.

Малые габариты способствуют установки в новую или существующую схему.

Таблица 3.7.2. Основные технические характеристики молотковой мельницы CHM 23/20.

Производительность по исходному твердому материалу 230 кг/ч
Диметр ротора 230 мм
Ширина входного отверстия 200 мм
Диапазон размола 0,5 - 1 мм
Номинальная мощность эл. привода не более 3 кВт

Принип работы одновальцовойая дробилки CEB.

Подача продукта осуществляется через вместительную входную воронку поверх ротора. Закрепленные на роторе подвижные ударные элементы - плоские, из стали – при вращении ротора поворачиваются во внешнюю сторону под действием центробежной силы и тем самым разбивают находящийся в вихревом потоке в размольной камере материал. Таким образом материал не только направляется на внутренние стенки корпуса и закрепленные на нем отражательные пластины но и на встроенные в нижней части машины сетку или сетчатый фильтр, зазор которых определяет в конечном итоге размер частиц продукта [8].

3.7.3. Магнитный сепаратор ПБС-63/50

Сепаратор магнитный барабанный для сухого обогащения мелкодробленых сильномагнитных руд, а также для извлечения ферромагнитных примесей из стружки и кусковых отходов цветных металлов и их сплавов.

Таблица 3.7.3 Основные технические характеристики магнитного сепаратора ПБС-63/50.

Производительность по исходному твердому материалу 2 – 6 т/ч
Магнитная индукция на поверхности барабана, не менее 0,130 Тл
Диаметр барабана 600 мм
Длина барабана, (включая реборды) 500 мм
Номинальная мощность эл. привода не более 1,1 кВт
Крупность питания 0-4 мм
Габаритные размеры 900х1300х1400 мм
Масса, кг 550 кг
Количество барабанов 1

Данный сепаратор позволит отделить большую часть ферромагнитных примесей. Так же с ферромагнитными частицами будут увлекаться и остальные компоненты сырья [10].

Таблица 3.7.3. Приблизительные значения разделения продукта исходя из заданного фазового и химического состава сырья и объема переработки в год.

Твёрдосплавный концентрат Ферромагнитный концентрат
Компонент Содержание в концентрате [%] Масса[кг] Компонент Содержание в концентрате [%] Масса[кг]
Твёрдый сплав Т15К6 98,51 8925 Твёрдый сплав Т15К6 8 75
Сталь 1,04 94 Сталь 90 846
Паечные материалы 0,45 41 Паечные материалы 2 19
Всего: 100 9060 Всего: 100 940

Твердосплавный концентрат будим подвергать дальнейшей переработке. Ферромагнитный концентрат будет отправлен на переработку на сталеперерабатывающее предприятие.

4. Хлорирование подготовленного сырья

При разработке схемы хлорирования мы должны выделить наиболее ценный и концентрированный элемент в сырье. В нашем случае этот элемент вольфрам (см. таблицу 4.2.1). Следовательно нужно разработать схему переработки, чтобы повести селективное выделения вольфрама в форме, удобной для дальнейшей переработки.

4.1. Хлориды и оксохлориды вольфрама.

В технологии вольфрама хлорирование практически не используется. Вольфрам относится к числу металлов, для которых можно разработать хлорную схему переработки, особенно в случае переработки нестандартного полиметаллического сырья.

Наиболее общим подходом к разработке технологической схемы хлорирования является систематическое исследование фазных равновесий и свойств компонентов в системах W – Cl и W – Cl – O. Исследование свойств системы даст информацию для всех стадий технологического процесса: хлорирование исходного сырья, конденсацирование суммы хлорпроизводных и их разделение, использование индивидуальных хлорпроизводных в процессах получения и очистки необходимых продуктов [3].

Хлориды вольфрама.

Исследуем систему WCl6 – WCl4. Данная система является боковой стороной треугольника W – Cl – O (рис.4.1.2).


Рис.4.1.1. Диаграмма конденсированного состояния системы WCl4 – WCl6


Хлориды вольфрама многочисленны.

Высшие хлориды вольфрама - кристаллические вещества, гидролизующиеся во влажном воздухе и окисляющиеся кислородом.

Высший хлорид вольфрама WC16 существует в трех полиморфных модификациях.

Наиболее удобным способом получения WC16 является хлорирование металла. Хлорид WC16 конденсируется из паровой фазы в форме темно-фиолетовых кристаллов. Гексахлорид вольфрама не образует прочных комплексов с хлоридами щелочных металлов. Это позволяет использовать для его очистки от хлоридов алюминия и железа методы солевой очистки.

При повышенных температурах устойчивость низших хлоридов вольфрама понижается.

Пентахлорид вольфрама в твердом состоянии - димер W2С110. Пентахлоридвольфрама WC15 термически стабилен: сублимирует и испаряется без заметного разложения, темного (зеленовато-коричневого) цвета. WC15 конгруэнтно плавится при 250°С. В расплавах хлоридов щелочных металлов WCl5 образуют комплексы (Na,K) WCl6.

Тетрахлорид вольфрама - кристаллические вещества темного цвета. Получаются при восстановлении высших хлоридов. Процессы термического разложения МС14 сложны и являются совокупностью реакций сублимации и диспропорционирования с образованием МС1х (д: < 3), составы которых по данным различных авторов отличаются. WC14 образуют с хлоридами щелочных металлов комплексы М2WС16 (М = Na, К, Rb, Cs).

Низшие хлориды WС1х (х < 3) - кристаллические вещества темного цвета, состав и свойства которых изучены недостаточно. Получаются при восстановлении высших хлоридов [3].

4.1.2. Оксохлориды вольфрама


Рис.4.2.1. Диаграмма конденсированного состояния системы WCl6 – WO3

Высшие оксохлориды вольфрама WOC14 и WO2C12 кристаллические вещества, гидролизующиеся во влажном воздухе. Диоксодихлориды менее склонны к гидролизу. WOC14 образует темно-красные игольчатые кристаллы тетрагональной сингонии. WO2C12 - светло-желтое кристаллическое вещество. WOC14 плавится и испаряется без заметного разложения; расплавить WO2C12 под обычным давлением не удается, так как он разлагается на WO3 и паровую фазу, содержащую молекулы WOC14 и WC16. WOC14 не образует прочных комплексов с хлоридами щелочных металлов.

Вольфрам в степени окисления (V) образуют оксотрихлорид WOCl3. WOCl3 термически не устойчив, диспропорционирует на WOCl2 и WOCl4

Оксодихлорид WОС12 - химия этого вещества изучена недостаточно. Температура кипения намного выше WOCl4 [3].