2. Uд=38 В, Iсв=340 А, Vсв=18 м/час.
1. Uд=40 В, Iсв=350 А, Vсв=18 м/час.
Рисунок 3. Схема раскладки валиков по 2 шт. в слое при рограммном управлении процессом.
Сварочный ток при ПВ = 100%, А | 1000 |
Скорость подачи электрода, луч | 5- 50 |
Регулирование скорости подачи электрода | ступенчатое |
Скорость сварки, м/ч | 5-58 |
Регулирование скорости сварки | cтупенчатое |
Маршевая скорость, м/ч | 800 |
Перемещение сварочной головки:вертикальный ход, ммскорость, м/минпоперечный ход, мм | 4000,4200 |
Объем флюсобункера, дм3 | 25 |
Габаритные размеры автомата, мм:высоташиринадлина | 23008101050 |
Данное сварочное оборудование обеспечивает следующие требования:
1.является новейшей современной конструкцией;
2.полностью обеспечивает необходимую по технологии производительность;
3.обеспечивает надежность и безотказность в работе, является автоматизированным.
Источником питания служит выпрямитель ВДУ – 1201.
Таблица – 10. Характеристика выпрямителя ВДУ – 1201.
Номинальный сварочный ток, А 1250 |
Режим работы, ПВ, % 100 |
Напряжение холостого хода, В, не более 85 |
Номинальное рабочее напряжение, В при работе на характеристиках: жестких 56падающих |
Пределы регулирование сварочного тока, А, приработе на характеристиках:жестких 300-1250падающих |
Пределы регулирования рабочего напряжения, В, при работе на характеристиках:жестких 24-56падающих 26-56 |
Первичная мощность, кВ·А, не более 118 |
КПД, %, не менее 83,5 |
3.8 Проектирование и выбор технологической оснастки процесса сборки и сварки и ее описание
Использование сборочно-сварочных приспособлений предусматривает решение ряда вопросов: получение заданных размеров узла, упрощении технологии сборки и сварки, снижение трудоемкости запланированных операций, исключение вообще или сведение до минимума доли ручного труда, уменьшение сварных деформаций и остаточных напряжений.
Так как мы свариваем тело вращения, то рациональнее всего для выполнения кольцевого шва используют двухстоичный контаватель, который конструктивно выполнен в виде горизонтального пресса, установленного на станину и снабженного приводной бабкой для вращения вобранного и сжатого
с заданным усилием пакета деталей в процессе их нагрева и сварки.
Стенд снабжен подвижной и неподвижной траверсами, соединенными между собой для создания замкнутого силового контура, тягами прямоугольного сечения, системой подвижных макетов для установки деталей, и упорными самоустанавливающимися подшипниками, а также опорами для свободных концов тяг и отдельно стоящей стойкой под оптическую трубу с регулируемым по высоте столом.
Гидросистема стенда состоит из гидростанции с насосами высокого и низкого давления, имеющими индивидуальный привод, гидроаккумуляторы установки, поддерживающие заданное давление в гидросистеме в процессе всего цикла сварки, аппаратуры управления и силовых цилиндров.
Привод вращения деталей механический на базе приводной бабки токарного станка модели 1А670, обеспечивает передачу постоянного крутящего момента в диапозоне бесступенчатого регулирования оборотов, необходимого для сварки с постоянной скоростью.
Управление гидро- и электрооборудованием стенда сосредоточено на двух независимых пультах управления, размещенных на основании подвижной траверсы и кроме этого, предусмотрены два пульта управления вращением детали.
3.8.1 Расчет привода кантавателя.
Деталь своей базовой поверхностью устанавливается в планшайбе с помощью кулачков.
Рассчитаем необходимый приводной момент вращения заготовки во время сварки, для этого определяем, что:
Рисунок 6. Расчетная схема.
Известно:
l1= 1700 мм l2= 300 мм dB=460 мм dD=460 мм
a1=900 мм h2= 1610 мм dA=460 мм l=0,005 м
h1= 1500 мм a2=200 мм dC=460 мм Q=8кН
Наибольший крутящий момент Мкр воспринимаемый приводом кантователя, равен сумме двух моментов грузового М=G·l и сил трения Mтр в подшипниках определяется вырожением:
Mтр=0,5(AdA·fA+BdB·fB+CdC·fC+DdD·fD),
где А,В,С,D – усилия в подшипниках;
dA, dB, dC, dD – соответствующие диаметры шпинделей.
Усилия действующие на хвостовики шпинделей, определяются как реакции опор балки весом G, свободно опертой своими концами в шарнирах передней и задней бабок,
; ;В соответствии с этим вертикальные усилия в подшипниках передней бабки будут:
; ; ; .То же в подшипниках задней бабки:
В подшипниках передней бабки, кроме того возникают радиальные усилия под действием окружной силы Q на зубчатом колесе:
;Так, как при данном расположении ведущей шестерни усилия А3 и В3 будут направлены горизонтально, т.е. перпендикулярно вертикальным нагрузкам АВ и ВВ, то суммарныерадиальные усилия в подшипниках передней бабки будут равны геометрической сумме двух взаимно перпендикулярных составляющих:
; ;Аксиальное усилие в подшипниках равно силе зажатия задней бабки и зависит от типа изделия, его размеров и способа крепления. В данном случае это крепление равно нулю.
Таким образом определив усилия в подшипниках А1 и приняв коэффициент трения металлических частей f = 0,1, мы можем определить момент сил трения в подшипниках
Mтр=0,5(AdA·fA+BdB·fB+CdC·fC+DdD·fD),
Mтр=0,5·0,1·104(46,01·0,7+15,9·0,46+46,7·0,3+18,7·0,4)=0,5·0,1·104·60,99=
=30500(Н·м),
Mтр=30,5(к Н·м)
Для определения крутящего момента, необходимо определить грузовой момент, который равен:
М=G·li
М=58·104·0,005=0,29·104 (Н·м),
Следовательно, крутящий момент равен:
Мкр=М+Мтр;
Мкр=0,29·104+3,05·104=3,34·104(Н·м),;
Mкр=33,4 (к Н·м)
Мощность привода определяется как
, в зависимости от величины крутящего момента Мкр и требуемой частоты вращения шпинделя и (об/мин).Зная что Mкр=33,4 (к Н·м), n = 0,2 об/мин;
η=0,57
3.8.2 Расчет требуемого диаметра гидроцилиндра
Исходя из того, что усилия закрепления детали составляет 40% от веса детали, определим что:
Р = 230кН.
Расчет силовых цилиндров производится по формулам, основанным на известной зависимости усилия на штоке от диаметра цилиндра D и давления в цилиндре q.
,Р = 230 кН, требуемое усилие,
q= 4 МПа (давление в гидросети )
η – коэффициент полезного действия оценивает потери на трение в манжетах и уплотнениях, а также направляющих штока. Приблизительно η=0,85.
Из формулы определим диаметр цилиндра:
; (м).Принимаем из стандартного ряда Dцил=250 мм.