Отмечены также случаи, когда длительное использование тефлоновых препаратов приводило к закоксованию поршневых колец и, как следствие, перегреву поршней и выходу силового агрегата из строя.
Полимерные антифрикционные препараты появились раньше остальных. Эти препараты создавались специалистами оборонной промышленностью и изначально имели узкое назначение — обеспечить кратковременное сохранение подвижности боевой техники в случае серьезного повреждения масляной системы.
Долгая работа препарата в масляной системе двигателя обычного автомобиля была исследована слабо. Видимый эффект от использования полимерных антифрикционных препаратов сводился к росту мощности мотора и снижению расхода топлива.
У изношенного двигателя на малых оборотах гасла контрольная лампа давления масла, из чего делался вывод о восстанавливающем действии препарата. Однако эффект снижения расхода топлива быстро пропадал, а причина увеличения давления масла со всей очевидностью вскрывалась при разборке двигателя: приемный грибок масляного насоса и масляные каналы «зарастали» полимером, сечения каналов уменьшались, что и приводило к росту давления.
Уменьшение расхода масла, естественно, отрицательно сказывалось на работе подшипников двигателя. Пока действовала полимерная защита поверхностей трения, это было не очень заметно, но, как только она пропадала, износ двигателя и расход топлива резко возрастали, а мощность падала.
Действие ремонтно-восстановительных составов (РВС), содержащих минеральные присадки, базируется на уникальных свойствах порошка серпантивита (змеевика), открытых в СССР при бурении сверхглубоких скважин на Кольском полуострове. Тогда неожиданно обнаружилось, что при прохождении слоев горных пород, насыщенных минералом серпантивитом, ресурс режущих кромок бурового инструмента резко увеличивается.
Дальнейшие исследования показали, что серпантивит в зоне контакта бура с горной породой разлагается с выделением большого количества тепловой энергии, под воздействием которой происходит разогрев металла, внедрение в его структуру микрочастиц минерала и образование композитной металлокерамической структуры (металл—минерал), обладающей очень высокой твердостью и износостойкостью.
Позже предпринимались многочисленные попытки применить порошки серпантивита для обработки двигателя. Обработка поверхностей трения в моторе действительно наблюдается — происходит микрошлифовка поверхностей цилиндров, растет компрессия, падает скорость износа. Однако применение РВС в двигателях неожиданно столкнулось с серьезной проблемой: агрегат, обработанный минералами, теряет температурную стабильность. Температура охлаждающей жидкости в контуре охлаждения перестает реагировать на режим — обороты коленчатого вала и нагрузку.
Объяснение этому простое. На пути основного теплоотвода от поршня через поршневые кольца встало дополнительное мощное тепловое сопротивление — металлокерамический слой. Сначала это старались выдать за дополнительное достоинство РВС, но вскоре стали наблюдаться многочисленные случаи выхода двигателей из строя по причине перегрева деталей ЦПГ. Чаще всего такой эффект отмечается в предельных режимах работы мотора, но кто может дать гарантию, что двигатель не заклинит, когда вы захотите резко стартовать после долгого стояния в уличной пробке жарким летним днем?
Помимо прочего выявилось, что в процессе приработки двигателя с РВС из-за резко возросших температур цилиндра значительно увеличивается расход масла и достаточно часто отпускаются термофиксированные поршневые кольца. Разработчики РВС не учли также, что в моторе работают пары трения с различными механическими свойствами. И если в цилиндре поверхности поршневых колец и гильзы цилиндра (блока) имеют примерно одинаковую твердость, то при работе пар «тронк поршня — гильза цилиндра» и «шейка коленчатого вала — вкладыш подшипника» поверхностная твердость различается, как минимум, на порядок. В этих парах происходит не микрошлифовка поверхности с образованием защитного слоя, а простой абразивный износ, при котором твердые частицы минералов внедряются в мягкие поверхности, нарушая их структуру и ухудшая условия формирования смазочных слоев.
Действие эпиламных (эпиламоподобных) антифрикционных препаратов построено на базе формирования т.н. эпиламных слоев на всех поверхностях трения двигателя. В зоне трения под воздействием высоких контактных давлений и температур реализуется механизм локальных поверхностных реакций, при котором «съедаются» выступы шероховатостей. Продуктами реакции — соединениями металлов — заполняются впадины шероховатостей и дефекты поверхности, образовавшиеся в процессе эксплуатации силового агрегата.
Испытания показали, что чистота поверхности после формирования упрочненного слоя на 60 — 80% выше, чем до обработки, при этом резко возрастают поверхностная твердость и износостойкость покрытия. Кроме того, формируется специальная микроячеистая «сотовая» структура, способствующая удержанию масла.
Действие эпиламов давно известно в металлообработке, где эпиламообразующие присадки используются для увеличения ресурса металлорежущего инструмента и скорости обработки деталей. Таким образом, эпиламный износостойкий антифрикционный слой формируется на атомарном уровне и является, по сути, структурой кристаллической решетки металла, что определяет высокую прочность слоя. Он формируется один раз, при начальной обработке, и в дальнейшем не требует присутствия препарата в масле.
Аналогичный эффект может быть достигнут за счет ввода в состав присадок поверхностно-активных веществ различной природы — галогенов (классическое эпиламообразующее вещество — фтор) или органических соединений. В последнем случае защитный слой образуется металлоорганическими соединениями, близкими по свойствам к классическим эпиламам.
Препараты этой группы достаточно редки на нашем рынке (автору известны только два). Они существенно дороже материалов других групп, однако, как показали исследования, за исключением некоторой нестабильности результатов обработки, никаких отрицательных последствий для двигателя применение этих препаратов за собой не влечет.
Нередко в магазинах появляются присадки, состав и описание действия которых либо держатся в секрете, либо страдают несуразицами, выдающими отсутствие профессионализма «авторов» (например, вещество, которое непонятно как, но «где надо — ускоряет, а где надо — замедляет процесс сгорания, восстанавливает начальный размер детали путем разрыхления кристаллической решетки, легирующее структуру металла в зоне трения»).
Список используемой литературы
1. Исследование продовольственных товаров [Текст]: учебное пособие / В.И. Базарова, Л.А. Боровикова, А.Л. Дорофеев. – 2-е изд. – М.: Экономика. – 295с.
2. Коммерческое товароведение и экспертиза Учеб. пособие для вузов/ А.Васильев, Л.А.Ибрагимов, Н.А.Нагапетьянц и др.; Под ред. Г.А.Васильева, Н.А.Нагапетьянца. – М.: Банки и биржи, ЮНИТИ. -135 с.
3. Справочник товароведа. Непродовольственные товары. Т. 3 [Текст] / Н. Г. Асатурьян, А. В. Викторов, Е. В. Зайцев. - 3-е изд., перераб. - М. : Экономика, 1990. - 398 с.
4. Гуреев А.А., Серегин Е.П., Азев B.C. Квалификационные методы испытаний нефтяных топлив. М, Химия, 1984.- 200 с.; ил.
5. Кондрашева Н.К., Ахметов А.Ф. Судовые топлива. Уфа: Гилем, 2001. 143с.
6. Топлива, смазочные материалы, технические жидкости. Ассортимент и применение: Т 581 Справочник / И.Г. Анисимов, К.М. Бадыштова, С.А. Бнатов и др.; Под ред. В.М. Школьникова. Изд. 2-е перераб. и доп. - М.: Издательский центр "Техинформ", 1999.-596 с.: ил.
7. Т.Н. Митусова, Е.В. Полина, М.В. Калинина. Современные дизельные топлива и присадки к ним — М.: Издательство «Техника». ООО «ТУМА ГРУПП», 2002. — 64 с.
8. Топливо дизельное автомобильное (EN 590) ТУ 38.401-58-296-2001
9. Топливо маловязкое судовое. Технические условия ТУ 38.101567-2000 Взамен ТУ 38 101567-87
10. ГОСТ 17479.3-85 "Масла гидравлические. Классификация и обозначение" (утв. постановлением Госстандарта СССР от 20 декабря 1985 г. N 4380)
11. ГОСТ 26191-84. «Масла, смазки и специальные жидкости»
12. ГОСТ 10541-78. «Масла моторные универсальные и для автомобильных карбюраторных двигателей»
13. ГОСТ 15819-85 «Масла РМ и РМЦ. Технические условия»
14. ГОСТ 10363-78 «Масло ЭШ для гидросистем высоконагруженных механизмов. Технические условия»