Нетканые перегородки могут быть изготовлены так, что размеры их пор будут уменьшаться в направлении от поверхности перегородки, соприкасающейся с суспензией, к поверхности, соприкасающейся с опорным устройством Это понижает гидравлическое сопротивление при фильтровании и обеспечивает задерживание относительно крупных частиц суспензии во внешних слоях нетканой перегородки, а более мелких —во внутренних. Такую структуру нетканой перегородки можно получить, например, последовательным нанесением на бесконечную сетку при ее движении и действии вакуума слоев мелких, смеси мелких и крупных, а также крупных волокон с дальнейшим прессованием и наматыванием на ролик полученной ленты [366].
Нетканые перегородки из синтетических [40] механически связанных волокон получают прокалыванием слоя волокон иглами (около 160 прокалываний на 1 см2) и последующей его обработкой при повышенной температуре жидкостью (например, водой), вызывающей сокращение волокон; такие перегородки отличаются достаточной механической прочностью, небольшим гидравлическим сопротивлением, а также равномерным распределением волокон. Перегородки из волокон, соединенных связующим веществом, получают прессованием слоя волокон, например, при давлении 7р н-см'2 и температуре 150° С. В качестве связующих веществ можно использовать натуральный каучук, синтетический каучук, а также синтетические полимеры; эти перегородки имеют достаточную механическую прочность, небольшую пористость, устойчивы к действию агрессивных жидкостей.
Описаны [360] фильтровальные перегородки, изготовленные нанесением тончайшего слоя термостойкого металла, например никеля, на поверхность волокон неорганического или органического нетканого материала, в частности хлопчатобумажного или шерстяного. Такие перегородки устойчивы при 200° С и выше; они имеют ряд преимуществ по сравнению с применяемыми в настоящее время неткаными перегородками.
Гибкие перегородки из смешанных материалов. Для повышения механической прочности ткани, изготовленной из слабых нитей, в основе и утке этой ткани чередуют в определенной последовательности слабые и металлические нити. Однако при этом, как уже отмечалось на примере ткани, состоящей из асбестовых и металлических нитей, нарушается однородность ткани. Для повышения механической прочности ткани предложено также чередовать в ее основе и утке определенное число пряденных и непрерывных нитей; указано, что поры такой ткани закупориваются твердыми частицами меньше, чем поры обычной ткани [200].
НЕГИБКИЕ ФИЛЬТРОВАЛЬНЫЕ ПЕРЕГОРОДКИ
Жесткие перегородки изготовляют в виде дисков, плиток, патронов. Они состоят из частиц твердого материала, жестко связанных между собой путем непосредственного спекания или спекания в присутствии связующего вещества таким образом, что эти частицы образуют поры, проницаемые, для жидкости. В зависимости от размера частиц исходного материала, температуры, давления и продолжительности спекания можно получить перегородки с различной пористостью. При этом равномерность пор оказывается тем выше, чем правильнее форма частиц исходного материала. Эти перегородки, как правило, отличаются длительным сроком службы, устойчивостью к действию агрессивных жидкостей и способностью легко отделяться от осадка. Однако частицы, которые проникают в поры перегородки, с трудом извлекаются, причем промывка и замена перегородки затрудняется тем, что она обычно жестко укреплена на фильтре.
Металлические перегородки [35, 201—203,361, 362, 367, 368, 371] находят все более широкое применение в химической и ряде других отраслей промышленности в качестве пористых перегородок для фильтрования жидкостей и газов и диспергирования газов в жидкостях.
Исходным материалом для изготовления этих перегородок служат металлические порошки, состоящие из шарообразных (или близких к шарообразным) частиц с гладкой поверхностью; эти порошки получают методами порошковой металлургии.
Наиболее часто применяются порошки из частиц углеродистой, нержавеющей или жароупорной стали, бронзы, латуни, никеля, серебра, а также карбидов некоторых тяжелых металлов.
Порошки подвергают спеканию, иногда после предварительного прессования. Пористые ленты получают обработкой порошка на вальцах и последующим спеканием.
Рассматриваемые перегородки можно изготовлять в виде листов, дисков, полых цилиндров или конусов, а также тел другой формы, причем их физические свойства, химический состав, структура, пористость, прочность и размер могут быть различными в зависимости от предъявляемых к ним требованиям. Размер пор в таких перегородках равен 1—75 мкмг а пористость достигает 50%; прочность на растяжение составляет до 7 • 103 н • см'г.
Так, описан [452] патрон, изготовленный из листа, полученного прокаткой и спеканием специального порошка титана с содержанием 85—90% частиц размером до 60 мкм; пористость листа 38— 43%, максимальный размер его пор 5—6 мкм, прочность на растяжение 3—5 н • смтК
Металлические перегородки могут применяться в процессах фильтрования с закупориванием пор и с образованием осадка, причем регенерацию их удобно осуществлять в первом случае растворением твердых частиц в порах подходящей- жидкостью, а во втором— обратным толчком фильтрата или подходящего газа.
Керамические перегородки изготовляют из предварительно измельченного и просеянного кварца или шамота, который затем тщательно смешивают со связующим веществом, например тонкодисперсным силикатным стеклом, и обжигают [204]. Перегородки из кварца устойчивы к действию концентрированных минеральных кислот, но нестойки к действию слабощелочных или нейтральных водных растворов солей. Перегородки из шамота хорошо сопротивляются воздействию разбавленных и концентрированных минеральных кислот и водных растворов их солей, но мало устойчивы к действию щелочных жидкостей [372].
Шероховатая поверхность керамической фильтровальной перегородки способствует адсорбции частиц и образованию сводиков над порами в процессе разделения суспензии.
При обжиге смеси шамота и связующего вещества получают также крупные блоки, из которых после медленного охлаждения вырезают однородные по свойствам фильтровальные перегородки нужной формы. Используя в качестве связующего вещества синтетические, например феноло-формальдегидные, полимеры, путем их отверждения при относительно невысоких температурах получают керамические фильтровальные перегородки, не содержащие замкнутых, не проницаемых для жидкости пор.
Описан способ изготовления керамических перегородок смешением кварцевого порошка со смесью термореактивной смолы и растворителя с последующим испарением растворителя, классификацией по размерам частиц кварца, покрытых пленкой смолы толщиной 0,1 диаметра частиц, и горячим прессованием. Полученные таким образом перегородки могут иметь форму пластин или полых цилиндров [373].
Стеклянные перегородки получают спеканием различных фракций измельченного кварцевого стекла (без добавления связующего вещества) или обжигом измельченной смеси кварцевого и боросиликатного стекол с последующей обработкой изделия соляной кислотой для удаления химически нестойких компонентов [204]. Такие перегородки обычно выпускают --в виде круглых дисков диаметром 10—200 мм с равномерными порами и применяют главным образом для лабораторных работ; однако их можно использовать и в заводских условиях, в частности в виде патронов.
Диатомитовые перегородки. Разнообразная форма и относительно одинаковые размеры частиц диатомита, свойства которого как вспомогательного вещества были рассмотрены в предыдущей главе, обусловливают высокую эффективность таких перегородок, задерживающих твердые частицы размером менее 1 мкм и даже некоторые виды бактерий. Перегородки в форме пластин и патронов получают обжигом смеси диатомита и связующего вещества.
Угольные перегородки. Пористые угольные перегородки получают смешением определенной фракции измельченного кокса с антраценовой фракцией каменноугольной смолы и последующим формованием образующейся смеси под давлением, сушкой формованных изделий и нагреванием их в восстановительном пламени [7]. Эти перегородки отличаются механической прочностью и устойчивостью к действию кислот и щелочей.
Эбонитовые перегородки. Для их получения частично вулканизованный каучук измельчают, прессуют в формах и подвергают окончательной вулканизации. Эти перегородки устойчивы к действию кислот, растворов солей и щелочей. Для разделения суспензий перегородки из некоторых сортов эбонита могут быть использованы при температурах от —10 до +110° С [7].
Пенопластовые перегородки [453]. Пенопласта, применяемые для изготовления фильтровальных перегородок, получаются на основе полнвинилхлорида, полиуретана, полиэтилена, полипропилена и других полимерных материалов. Пенопластовые перегородки экономичны, так как исходное сырье и способ их изготовления недороги.
Перегородки из сплавленной окиси алюминия обладают относительно высокой пористостью I) устойчивостью к резким изменениям температуры [5]. В виде плиток они применяются главным образом в фильтрах с ложным дном, где их используют в качестве фильтровальных или опорных перегородок, на которые помещают слой песка или другого сыпучего материала.
Перегородки из природных камней. Фильтровальные перегородки в виде плиток, вырезанных или выпиленных из некоторых сортов песчаника, использовались раньше в нутчах. Вследствие того, что такие перегородки отличаются недостаточно равномерным распределением пор, в настоящее время они заменены керамическими перегородками.
Нежесткие перегородки. Эти перегородки состоят из соприкасающихся, жестко не связанных твердых частиц каменного, древесного и животного углей, кокса, диатомита, отбеливающей глины, песка, а также некоторых неорганических солей. По сравнению с перегородками других типов они относительно дешевы и имеют то преимущество, что могут поддерживаться в чистом состоянии промывкой, сопровождающейся изменением взаимного расположения твердых частиц в результате перемешивания. Недостатком таких перегородок является возможность их применения только при наличии горизонтальной опорной перегородки. Проницаемость таких перегородок по отношению к жидкой фазе суспензии и способность задерживать ее твердую фазу в значительной мере определяется размером и формой составляющих перегородку частиц. В некоторых случаях действие этих перегородок основано не только на механическом задерживании твердой фазы суспензии, но и на адсорбции взвешенных и растворенных веществ на поверхности твердых частиц.