При помощи полупроводников можно получить и охлаждение на несколько десятков градусов. В последние годы особое значение приобрело рекомбинационное свечение при низком напряжении постоянного тока электронно-дырочных переходов для создания сигнальных источников света. Кроме вышеуказанных основных применений полупроводников они могут служить нагревательными элементами (силитовые стержни), с их помощью можно возбуждать катодное пятно в игнитронных выпрямителях (игнитронные поджигатели), измерять напряженность магнитного поля (датчики Холла), они могут быть индикаторами радиоактивных излучений и т. д. Использующиеся в практике полупроводниковые материалы могут быть подразделены на простые полупроводники (элементы), полупроводниковые химические соединения и полупроводниковые комплексы (например, керамические полупроводники). В настоящее время изучаются также стеклообразные и жидкие полупроводники.
Простых полупроводников существует около десяти. Для современной техники особое значение получили германий, кремний и селен.
Полупроводниковыми химическими соединениями являются соединения элементов различных групп таблицы Менделеева.
К многофазным полупроводниковым материалам можно отнести материалы с полупроводящей или проводящей фазой из карбида кремния, графита и т. п., сцепленных керамической или другой связкой. Наиболее распространенными из них являются тирит, силит и др.
Изготовленные из полупроводниковых материалов приборы обладают целым рядом преимуществ; к ним относятся:
1)большой срок службы;
2)малые габариты и вес;
3)простота и надежность конструкции, большая механическая прочность (не боятся тряски и ударов);
4)полупроводниковые приборы, заменяющие электронные лампы, не имеют цепей накала, потребляют незначительную мощность и обладают малой инерционностью;
5)при освоении в массовом производстве они экономически целесообразны.
Отечественная наука и техника полупроводников развивалась собственным путем, обогащая мировую науку своими достижениями и успехами и в то же время, используя все прогрессивное, что давала зарубежная наука и техника, путем творческого освоения практических результатов иностранных работ.
2.4 Магнитные материалы
Магнетизм — это особое проявление движения электрических зарядов внутри атомов и молекул, которое проявляется в том, что некоторые тела способны притягивать к себе и удерживать частицы железа, никеля и других металлов. Эти тела называются магнитными.
Вокруг всякого намагниченного тела возникает магнитное поле, являющееся материальной средой, в которой обнаруживается действие магнитных сил.
При внесении в магнитное поле какого-либо тела оно пронизывается магнитными линиями, которые определенным образом воздействуют на поле. При этом различные материалы по-разному воздействуют на магнитное поле. В намагниченных телах магнитное поле создается при движении электронов, вращающихся вокруг ядра атома и вокруг собственной оси. Орбиты и оси вращения электронов в атомах могут находиться в различных положениях один относительно другого, так что в различных положениях находятся магнитные поля, возбуждаемые движущимися электронами. В зависимости от взаимного расположения магнитных полей они могут складываться или вычитаться. В первом случае атом будет обладать магнитным полем или магнитным моментом, а во втором — не будет. Материалы, атомы которых не имеют магнитного момента и намагнитить которые невозможно, называются диамагнитными. К ним относятся абсолютное большинство веществ, встречающихся в природе, и некоторые металлы (медь, свинец, цинк, серебро и другие). Материалы, атомы которых обладают некоторым магнитным моментом и могут намагничиваться, называются парамагнитными. К ним относятся алюминий, олово, марганец и др. Исключение составляют ферромагнитные материалы, атомы которых обладают большим магнитным моментом и которые легко поддаются намагничиванию. К таким материалам относятся железо, сталь, чугун, никель, кобальт, гадолиний и их сплавы.
Свойство электрического тока создавать магнитное поле широко используется на практике.
Железный или стальной стержень, помещенный внутрь соленоида, при пропускании тока по соленоиду приобретает магнитные свойства. Стержень магнитотвердой стали вследствие большой величины коэрцитивной силы, свойственной этому материалу, в значительной мере сохраняет магнитные свойства и после исчезновения тока.
В устройствах электроники и связи часто применяют поляризованные электромагниты, у которых либо сердечник, либо якорь, либо оба вместе представляют собой магниты.
Неполяризованный электромагнит притягивает свой якорь независимо от направления посылаемого в его обмотку тока. Работа же поляризованного электромагнита зависит от направления тока в его обмотке. Так, например, в прямом поляризованном электромагните ток одного направления усиливает магнитное поле его сердечника, а другого — ослабляет.
Электромагниты нашли широкое применение в подъемных и тормозных устройствах, для закрепления в станках стальных обрабатываемых деталей, в электроавтоматах, реле и других устройствах.
Величины, с помощью которых оцениваются магнитные свойства материалов, называются магнитными характеристиками. К ним относятся: абсолютная магнитная проницаемость, относительная магнитная проницаемость, температурный коэффициент магнитной проницаемости, максимальная энергия магнитного поля и пр. Все магнитные материалы делятся на две основные группы: магнитно-мягкие и магнитно-твердые.
Магнитно-мягкие материалы отличаются малыми потерями на гистерезис (магнитный гистерезис - отставание намагниченности тела от внешнего намагничивающего поля). Они имеют относительно большие значения магнитной проницаемости, малую коэрцитивную силу и относительно большую индукцию насыщения. Данные материалы применяются для изготовления магнитопроводов трансформаторов, электрических машин и аппаратов, магнитных экранов и прочих устройств, где требуется намагничивание с малыми потерями энергии.
Магнитно-твердые материалы отличаются большими потерями на гистерезис, т. е. обладают большой коэрцитивной силой и большой остаточной индукцией. Эти материалы, будучи намагниченными, могут длительное время сохранять полученную магнитную энергию, т. е. становятся источниками постоянного магнитного поля. Магнитно-твердые материалы применяются для изготовления постоянных магнитов.
Согласно своей основе, магнитные материалы подразделяются на металлические, неметаллические и магнитодиэлектрики. К металлическим магнитно-мягким материалам относятся: чистое (электролитическое) железо, листовая электротехническая сталь, железо-армко, пермаллой (железо-никелевые сплавы) и др. К металлическим магнитно-твердым материалам относятся: легированные стали, специальные сплавы на основе железа, алюминия и никеля и легирующих компонентов (кобальт, кремний и пр.). К неметаллическим магнитным материалам относятся ферриты. Это материалы, получаемые из порошкообразной смеси окислов некоторых металлов и окиси железа. Отпрессованные ферритовые изделия (сердечники, кольца и др.) подвергают обжигу при температуре 1300-1500° С. Ферриты бывают магнитно-мягкие и магнитно-твердые.
Магнитно-твердые материалы обладают большими значениями коэрцитивной силы и большой остаточной индукцией, а следовательно, большими значениями магнитной энергии. К магнитно-твердым материалам относятся: