Смекни!
smekni.com

Циркулярні насоси (стр. 2 из 7)

Рисунок 2 - Триступеневе торцеве ущільнення:

1 - дросель; 2 - теплообмінник; 3 - фільтр; 4 - імпелер;

5 - пружина; 6 — аксіально-рухома втулка; 7 - опорне кільце

Щоб забезпечити протягом певного часу достатню герметичність ущільнення в аварійних ситуаціях при виході з ладу однієї із ступеней, кожна з них розраховується на повний перепад тиску. Основними елементами ущільнення служать аксіальна рухома втулка та нерухоме опорне кільце, які постійно притискаються одне до одного тиском середовища та пружинами. В якості пари тертя використовуються карбід вольфраму та графіт з бабітовим просоченням.

Сфера застосування одинарних торцевих ущільнень звичайно характеризують критерієм pv, де р — перепад тиску на ущільненні, МПа та v — швидкість ковзання на робочих поверхнях, м/с. На підставі аналізу ущільнень іноземних фірм у роботі [2] наводяться значення рv, що дорівнюють 8—36 МПа·м/с (нижнє значення відповідає парі тертя графіту по стеліту в середовищі масла, а верхнє — парі графіту по карбіду вольфраму в середовищі морської води), при яких забезпечується дворічний ресурс роботи ущільнення. Для деяких типів торцевих ущільнень фірма «Крейн Пекінг» (Великобританія) [17] допускає значення pv= 70-80 МПа·м/с, а фірма «Бургман» (Німеччина) [12] — до 100 МПа·м/с. Вказані допустимі значення недостатні для умов роботи ущільнень в ГЦН, особливо для блоків з реакторами ВВЕР. Їх можна дещо розширити, якщо використовувати більш зносостійкі пари тертя (наприклад, з силіційованого графіту), правильно вибрати конструкцію аксіальної рухомої втулки та ущільнювального кільця до неї. В цьому випадку вплив осьового биття та перекосів, викликаних неточністю обробки деталей або їх деформацією від дії тиску та температури рідини, зводиться до мінімуму, і ущільнення здатне працювати тривалий час без пошкоджень. Прикладом такої конструкції служить подвійне торцеве ущільнення для ГЦН з реактором РБМК [9]. Ущільнення контактне та виконано у вигляді єдиного блоку. До його складу входять внутрішня та зовнішня ступені торцевого ущільнення, тепловий бар’єр з боку порожнини насоса та теплообмінник, розташований безпосередньо у камері ущільнення. Аксіальні рухомі втулки разом з пружинами встановлюються на валу та своїми торцевими поверхнями притискаються у відповідь до нерухомих втулок. Основні елементи ущільнення ретельно урівноважені, що дозволяє виключити порушення поверхні контакту. Парами тертя служать кільця з силіційованого графіту. Завдяки конструктивним особливостям кожна із ступеней торцевого ущільнення призначена для роботи при повному перепаді тиску.

У камеру між ступенями подається чиста запірна вода. Проте завдяки малій величині витоків (6—10 л/год) та наявності в корпусі ущільнення вбудованих холодильників вона може протягомтривалого терміну працювати без подачі запірної води (на воді першого контуру). Критерій pv становить 130 МПа·м/с. Ущільнення допускає значне радіальне биття (до 0,4 мм) та осьові переміщення (до 3 мм) вала при роботі насоса. При цьому навантаження від пружин на ущільнювальні поверхні не змінюється. Вузол ущільнення випробуваний протягом тривалого часу на спеціальних стендах та в ГЦНпоказав стійку та надійну роботу. Зношення тертьових ущільнюючих поверхонь склав 3—4 мкм за 8000—10000 годин роботи.

Запропонована конструкція торцевого ущільнення, в якій одне з кілець має еліптичну форму ущільнювального пояска (рис. 3, а) [19], що сприяє поліпшенню змащенню та відведенню тепла із зони тертя. Розміри еліптичної поверхні вибирають так, щоб велика вісь внутрішнього еліпса була рівна меншій осі зовнішнього еліпса. У результаті за один оберт вся ущільнювальна поверхня приблизно половину часу знаходиться у контакті з рідиною, віддаючи їй тепло. Витоки рідини через еліптичне ущільнення дещо більше, ніж для звичайного ущільнення, та може становити декілька літрів за годину. Дане ущільнення з парою тертя карбіду вольфраму по графіту, встановлене в спеціальній дослідній петлі, пропрацювало понад 35000 годин. При цьому зроблено більше 450 зупинок та пусків насоса. Витоки через кожне ущільнення (всього були встановлені послідовно два ущільнення на загальний тиск 9,8 МПа) становили від 0,019 до 1,9 л/год. Знос графіту від 38 до 76 мкм, кільце з карбіду вольфраму зносу практично не мало. На підставі накопиченого на експериментальній установці досвіду еліптичні ущільнення були встановлені на п’яти циркуляційних насосах та пропрацювали в цілому 20000 годин при рv=125 МПа·м/с. Ця конструкція захищена патентом у Канаді та в інших країнах.

Умови роботи, подібні до умов в еліптичних ущільненнях, можна одержати, застосовуючи ексцентрично розташовані ущільнювальні пояски (рис. 3 б). Проте у цьому випадку навантаження на стику стає несиметричним, що є істотним недоліком таких ущільнень.

Останніми роками на базі торцевих ущільнень створений ряд нових типів ущільнень, у яких ущільнювальні пояски розвантажені та працюють з невеликим зазором у режимах тертя, близьких до рідинного. До них належать гідродинамічні та термогідродинамічні ущільнення.

У гідродинамічних ущільненнях, окрім ущільнювального паска, характерного для торцевих ущільнень, є додаткові опорні поверхні з клинами, що звужуються в тангенціальному напрямі та розділені між собою канавками (рис. 3 в). При обертанні вала на клиноподібних поверхнях виникає додаткова гідродинамічна сила, обернено пропорційна квадрату зазору. Рівновага аксіально рухомої втулки автоматично підтримується за рахунок зміни сили на клинах при відхиленні зазору від оптимального значення. При зупиненні ущільнення закривається та забезпечує герметичність. Крім скосів для створення підйомної сили, можна використовувати приховані сходинки Релея (рис. 3 д), спіральні канавки (рис. 3 е)[10]. Проте ці ущільнення не набули значного поширення в циркуляційних насосах через складну технологію їх виготовлення, особливо при використанні в парах тертя матеріалів з високою твердістю.

Рисунок 3 - Варіанти торцевих ущільнень:

а - еліптичний поясок; б - ексцентричний поясок;

в - гідродинамічне ущільнення; г - термогідродинамічне ущільнення;

д - сходинка Релея; е - спіральні канавки

Принцип роботи термогідродинамічних ущільнень грунтується на використанні деформації кілець під дією термічних напружень у зоні контакту. Запропонована конструкція термогідродинамічного ущільнення [4], в якій на поверхні одного з кілець виконуються серпоподібні канавки (рис. 3 г), сприяють утворенню мікроклинів за рахунок різниці температури, що утворюється в результаті нерівномірного охолоджування робочої поверхні кільця в окружному напрямі. У зоні мікроклинів при обертанні виникають додаткові підйомні сили, що дозволяють значно зменшити контактний тиск на робочих поверхнях та коефіцієнт тертя. Перевага цих ущільнень полягає у тому, що із зростанням швидкості ковзання та перепаду тиску різниця температур між окремими ділянками робочої поверхні зростає. Під дією великих термічних напружень та викликаних ними деформацій, розширяються зони, займані мікроклинами, збільшуються підйомні сили та знижується коефіцієнт тертя у робочому зазорі.

Так, зменшення коефіцієнта тертя від 0,05 до 0,005 дозволяє підвищити для цих ущільнень критерій pv до 500 МПа·м/с. Термін служби термогідродинамічних ущільнень завдяки зниженню тертя та зносу — високий, а витоки, наприклад, при перепаді 5 МПа, становить декілька літрів за годину. При зупиненні термогідродинамічне ущільнення забезпечує повну герметичність, оскільки не відбуваються деформації поверхонь під дією додаткових термічних напружень, викликаних тертям.

Прикладом використання термогідродинамічнх ущільнень може служити конструкція (рис. 4) [4] для циркуляційних насосів виробництва фірми «Клейн, Шанцлін, Беккер» (КСБ) з водно-водяним реактором АЕС Обрігхайм (Німеччина). Діаметр вала під ущільненням 182 мм, перепад тиску 14—15 МПа та частота обертання вала 1490 об/хв. Тут термогідродинамічне торцеве ущільнення 2 виконує роль замикаючого та працює при тиску 0,5—1 МПа з витоками близько 100 см3/год, хоча воно і розраховується на повний робочий перепад тиску, який може виникнути перед ним у аварійному режимі. Тиск перед замикаючим ущільненням знижується за допомогою двох послідовно розташованих ступеней гідростатичного ущільнення 1, на кожній з яких спрацьовує приблизно 7 МПа при організованих витоках 400—500 л/год, які відводяться через отвір 3. Тут гідростатичне ущільнення має на одній із торцевих поверхонь ряд замкнутих камер, які зв’язуються через дросель з ущільнювальною порожниною. Загальні витрати запірної води з температурою 40-500С становить близько 1,5 м3/год. Термогідродинамічні ущільнення експлуатувалися протягом багатьох років на АЕС Обрігхайм, пропрацювали без ремонту більше 38000 годин та продовжували працювати. При профілактичних оглядах насосів у цих ущільненнях заміняли тільки вторинні ущільнювальні кільця круглого перерізу з еластомеру.

Рисунок 4 - Комбіноване ущільнення вала ГЦН з водно-водяним реактором АЕС «КВО Обрігхайм» (Німеччина)

Для реакторів РБМК фірма КСБ застосовує в циркуляційних насосах на повний перепад тиску 9,5 МПа здвоєні термогідродинамічні ущільнення 1 та 2 (рис. 5), між якими тиск ділиться навпіл за допомогою дроселів 3 та 5 при організованих витоках через них 0,5 м3/год. Третя ступінь 4 ущільнення аварійна та є торцевим ущільненням, яке в нормальних умовах за допомогою пружин залишається відкритим. При виході з ладу ступені 2, а отже, ізбільшенні зовнішніх витоків черезнеї, аварійне ущільнення під дією виниклого перепаду тиску закривається та забезпечує необхідну герметичність всього вузла як при вибігу насоса, так і при його зупинці.