Вступ
На сучасному етапі атомна енергетика розвивається головним чином за рахунок будівництва ядерних енергетичних блоків потужністю 1 млн кВт та з більш киплячим (РБМК) і водно-водяним під тиском (ВВЕР) реакторами. Створення таких потужних енергетичних блоків зажадало різке укрупнення устаткування, включаючи головні циркуляційні насоси (ГЦН). Ці насоси виконують відповідальну роль - прокачують теплоносій (воду) через активну зону реактора в умовах високого тиску, температур та наведеної радіоактивності і значною мірою визначають надійність та стійкість експлуатації реакторів. Найменші перебої та неполадки в їх роботі абсолютно недопустимі. Крім того, ГЦН істотно впливають на економічні показники атомних електростанцій (АЕС). Потужність, яку споживають циркуляційні насоси, становить від 1% до 4% електричної потужності блоку. Наприклад, для реакторів ВВЕР потужністю 1000 МВт електроприводи всіх циркуляційних насосів першого контуру споживають до 25000 кВт. Маса одного зібраного насосного агрегату досягає 100 т. Вартість комплекту циркуляційних насосів для реакторів великої потужності порівнянна з вартістю власне реактора (без паливного завантаження) [8].
Параметри розроблюваних та тих, що знаходяться в експлуатації ГЦН для киплячих та водно-водяних реакторів під тиском, характеризуються значеннями, що наведені нижче [11]:
До недавнього часу в якості ГЦН використовувалися безсальникові герметичні насоси. Їх конструкція дозволяла забезпечити повну відсутність витоків — одна з основних вимог, що ставляться до ядерних установок. Проте створення герметичних насосів на великі подачі, що вимагаються для сучасних реакторів, та потужності технічно поки нерозв’язне, тому виникла необхідність переходу на циркуляційні насоси з ущільненням вала. Ці насоси у порівнянні з герметичними насосами мають такі переваги [8, 21]:
- знімний електричний або паротурбінний привід, який можна легко замінювати при несправностях та ремонтувати у звичних умовах;
- можливість за необхідності збільшувати за рахунок маховика інерційний вибіг ротора насоса для забезпечення циркуляції теплоносія в контурі в перші десятки секунд після несподіваного аварійного знеструмлення;
- насоси з ущільненням вала дешевші (на 50—60%) та мають вищий ККД (на 15—20%), що важливо для насосів з великою подачею;
- ремонтопридатний в умовах експлуатації.
Головні циркуляційні насоси з ущільненням вала (рис. 1), як правило, виконані з вертикальним розміщенням вала, на консолі якого у нижній частині встановлюється робоче колесо 1. У корпусі 3 розміщений направляючий апарат 2. З корпусом сполучені виймальна частина 4, де розміщені тепловий бар’єр 6, гідродинамічний або гідростатичний опорний підшипник 5, змащений водою, вузол механічного ущільнення 7, проставка 8 на роторі насоса, яка дозволяє замінювати ущільнення без розбирання верхньої частини насосного агрегату. До виймальної частини корпусу високого тиску кріпиться циліндрова рама 9, що служить опорою для опорно-упорного підшипника 10 та електродвигуна.
Рисунок 1 - Компонування головного циркуляційного насоса з ущільненням вала
Опорний підшипник 5 встановлюють, як правило, у безпосередній близькості від робочого колеса. Він призначений для сприйняття радіального зусилля, що діє на ротор насоса, через нерівномірність тиску в камері відведення. Тепловий бар’єр 6 служить для обмеження теплового потоку в зону вузла ущільнення вала.
Найважливішим елементом у розглянутій конструкції ГЦН є вузол ущільнення вала. Від нього залежать надійність та довговічність роботи насоса і, як наслідок, експлуатаційна готовність всього блоку. Ущільнення повинні забезпечувати необхідну герметичність при роботі насоса на різних експлуатаційних та аварійних режимах. Витоки радіоактивної води першого контуру через ущільнення назовні не повинне перевищувати декількох кубічних сантиметрів за годину, а організовані витоки запірної (очищеної) води — 0,5—1 м3/год. Витрата запірної води всередину насоса також повинна бути невеликою. Ущільнення вала повинне зберігати свою працездатність після короткочасного знеструмлення системи електроживлення насосів, внаслідок чого може припинятися подача замикаючої та охолоджуючої води. За надійністю система ущільнення не повинна поступатися іншим вузлам насоса та працювати протягом декількох років без заміни. Конструкція ущільнення повинна бути блоковою та забезпечувати тим самим швидку зміну ущільнення в насосі без демонтажу всієї установки.
Створення для ГЦН великої потужності ущільнень вала, розрахованих на високі перепади тиску (17,5 МПа), температури (310 °С) та окружні швидкості (25 м/с), що відповідають переліченим вище вимогам, становить складну технічну задачу. Незважаючи на те, що у промисловій експлуатації за останнє десятиліття з’явилося багато конструкцій ГЦН з ущільненням вала, за якими накопичений певний досвід, питання створення ущільнювальних систем, що мають високу надійність, герметичність та великий ресурс роботи, залишається до кінця невирішеним та служить предметом дослідження багатьох провідних насособудівельних фірм.
Огляд існуючих конструкцій
Принцип роботи більшості ущільнень вала, що набули поширення в ГЦН, полягає у тому, що запірна (буферна) холодна та очищена вода подається від стороннього джерела в камеру ущільнення під тиском, дещо перевищуючим тиск у порожнині насоса. Під дією цього перепаду частина запірної води проходить всередину насоса (внутрішні витоки), інша частина проходить через основне ущільнення, що дроселює, та відводиться в зливну місткість (організовані витоки). Ущільнення, що дроселює, служить для обмеження організованих витоків та зменшення тиску перед замикаючим ущільненням, яке запобігає зовнішньому (неорганізованому) витоку води з насоса. У деяких конструкціях на випадок виходу з ладу замикаючого ущільнення встановлюється додаткове аварійне ущільнення, при цьому в зону між ними подається повітря під тиском у декілька атмосфер.
Таким чином, ущільнення вала є складною системою, в яку, як правило, входять підживлювальний насос високого тиску, холодильники, фільтри, внутрішнє, основне дроселююче ущільнення, замикаюче та аварійне ущільнення, контрольно-вимірювальна апаратура для вимірювання тиску, величини витоків та температури.
Для нормальної роботи ущільнень необхідно перш за все, щоб температура води в зоні ущільнень не перевищувала 60 °С [13], що досягається шляхом подачі охолодженої нерадіоактивної запірної води від спеціальної системи інжекції або від системи підживлення першого контуру. Такий спосіб охолоджування не залежить від режиму роботи ГЦН, виключає потрапляння радіоактивних частинок та забруднення ними вузла ущільнення. На лінії підведення запірної води в зону ущільнення встановлюються фільтри, що забезпечують очищення води від механічних домішок розмірами до 5—50 мкм. У деяких випадках для замикання використовують воду з напірного патрубка насоса, заздалегідь охолоджену в теплообміннику. Проте така система ускладнюється через вимоги біологічного захисту та техніки безпеки при ремонтних роботах.
У сучасних конструкціях ГЦН найбільше поширення набули звичайні торцеві, гідродинамічні та гідростатичні ущільнення. Плаваючі ущільнення з радіальним зазором, не зважаючи на їх надійність та порівняльно великий досвід експлуатації в потужних живильних насосах, використовуються рідко через відносно великі витоки [18].
Звичайні торцеві ущільнення забезпечують практично повну герметичність, що спонукало використовувати їх в ГЦН. Питання проектування, дослідження та експлуатації торцевих ущільнень розглядаються у спеціальній літературі [1,4] та в даному огляді детально на них зупинятися немає потреби. Слід лише відзначити, що робочі поверхні в торцевих ущільненнях знаходяться в контакті та піддаються безперервному зносу. У зв’язку з цим доводиться зважати на кінцевий термін їх служби. У роботі [4] наведена залежність очікуваного терміну служби торцевого ущільнення від тиску, яка побудована на підставі статистичних даних, що належать до торцевого ущільнення насосів з діаметром вала 100 мм, коловою швидкістю 5 м/с та температурою води 65 °С. При тиску 10 МПа термін служби ущільнення становить близько 1000 годин, при 6 МПа він досягає шести місяців та лише при тиску нижче 1 МПа можна розраховувати на роботу протягом двох-трьох років. Тому в циркуляційних насосах, ресурс яких повинен становить більше 10000 годин, застосування одинарних торцевих ущільнень недоцільне. Для збільшення терміну служби використовують багатоступеневих конструкції з рівномірним розподілом між ними повного перепаду тиску. Звичайно у ГЦН застосовують 2—4 ступені торцевих ущільнень або використовують одну ступінь як замикаючу в поєднанні, наприклад, з гідростатичним ущільненням [16].
На рисунку 2 показане триступеневе торцеве ущільнення для ГЦН з реактором РБМК [11], в якому досягається рівномірний розподіл тиску між ступенями при допомозі дроселів, встановлених на зовнішній лінії. Поділ тиску супроводжується постійними витоками через зовнішню лінію, що становить декілька сотень літрів за годину. Тепло, що виділяється від тертя контактуючих поверхонь, відводиться через спеціальний замкнутий контур з теплообмінником та фільтром для уловлювання продуктів зносу. Циркуляція в контурі охолодження створюється вбудованим всередину ущільнення осьовим лабіринтовим насосом (імпелером). Температура води, що допускається, перед ущільненням 60 °С.