Смекни!
smekni.com

Червячная передача (стр. 3 из 5)

где m — модуль, м;

YF – коэффициент формы зуба, определяемый с учетом эквивалентного числа зубьев.

YF = 1,71,

=20,8 МПа.

Из расчета следует, что 20,8≤38,5.


4.9 Тепловой расчет

Червячный редуктор в связи с низким значением К.П.Д. и вследствие этого высоким выделением тепла обязательно проверяют на нагрев.

Тепловой расчет передачи представлен в таблице 5.9.

Таблица 5.9

Наименование параметров Обозначение Расчетные формулы
Приведенный угол трения, ° φ′ φ′=1,2°
К.п.д. червячной передачи η η =
=0,868
Мощность на червяке, кВт Р Р=2,2 кВт
Количество тепла, выделяемое в передаче, ккал/ч Q Q=860(1- η)Р=250
Коэффициент теплоотдачи, ккал/м2ч° КТ КТ=11
Температура масла в редукторе, °С t1 t1=70°
Температура окружающей среды, °С t0 t0=20°
Поверхность охлаждения, м2 S S=0,196
Количество отдаваемого тепла, ккал/ч Q1 Q1= КТ(t1- t0) S=107,8
Условие достаточности естественного охлаждения - Q≤Q1; 250≥107,8

Как видно из расчета таблицы 5.9, требуется искусственное охлаждение редуктора.

5 . СМАЗКА

Условия эффективной смазки червячных передач: достаточное покрытие рабочих поверхностей зубьев и подшипников масляным слоем, отвод такого количества тепла, которое требуется для предотвращения чрезмерного нагрева, малое сопротивление смазочной среды.

Смазка передачи осуществляется окунанием. Способ – картерный непроточный. Сорт масла – Автотракторное АК-15 ГОСТ 1862-63.

6 КОНСТРУИРОВАНИЕ ВАЛОВ РЕДУКТОРА

6.1 Исходные данные для расчета

Вращающий момент на быстроходном валу редуктора Т1 = 14,0 Н×м, на тихоходном валу Т2 = 550 Н×м. силы в червячном зацеплении редуктора:

Ft1 = Fa2 = 700 Н;

Ft2 = Fa1 = 4075 Н;

Fr1 = Fr2 = 1500 Н;

Размеры червяка d1 = 50 мм, df1 = 34 мм. Размеры червячного колеса d2 = 270 мм.

При расчете валов редуктора необходимо учитывать консольную нагрузку и считать ее приложенной в середине посадочной консольной части вала.

На быстроходном валу радиальную консольную нагрузку определяем по формуле.

Fк1 =80

,(7.1)

Fк1 =80

= 300 Н.

На тихоходном валу радиальную нагрузку определяем по формуле (7.2):

Fк2 =125

,(7.2)

Fк2 = 125

= 2930 Н.

В соответствии с конструкцией редуктора заданного типа из эскизной компоновки и ориентировочного расчета валов получим необходимые расстояния до опор валов и приложенных нагрузок.

6.2 Приближенный расчет быстроходного вала

Материал вала – сталь 40ХН, для которой предел выносливости после улучшения:

σ-1 = 0,35σb + (70…120),(7.3)

где σb = 920 МПа,

σ-1 = 0,35×920 + 100 = 422 МПа.

Допускается напряжение изгиба при симметричном цикле напряжений:

n]-1 =

,(7.4)

где [n] = 1,7 - – допускаемый коэффициент запаса прочности для опасного сечения;

Kσ = 2,0 – допускаемый коэффициент концентрации напряжений;

Kpn = 1 – коэффициент режима нагрузки при расчете на изгиб.

n]-1 =

= 124 МПа.

6.2.1 Составить расчетную схему (рисунок 7.1) быстроходного вала в соответствии со схемой действия сил и эскизной компоновкой.

Строим эпюры изгибающих моментов.

В вертикальной плоскости YOZ рисунок 7.1.

а) определим опорные реакции от действия сил Ft1:

Ray = Rcy=

= 350 Н.

б) проверим правильность определения реакций:

ΣY = - Ray + Ft1 - Rcy = -350 + 700 – 350 = 0

Реакции определены верно.

в) строим эпюру изгибающих моментов, для этого определим их значения в характерных сечениях вала:

- в сечении А М

= 0;

- в сечении B М

= Ray×125×10-3 = 350×95×10-3 = 43,8 Н×м;

- в сечении С М

= 0.

Следовательно, максимальный изгибающий момент будет в сечении В. Откладываем его на сжатом волокне вала (рис. 7.1.г.).

В горизонтальной плоскости XOZ (рис. 7.1.д)

а) определим опорные реакции от действия сил Fr1, Fa1, Fк1 из условия статики как сумма моментов относительно левой А и правой С опор.

ΣМА = 0 - Fr1×125 – Fa1×

+ Rcx×250 + Fk1×335 = 0

Rcx =

= 755,5 Н.

ΣМС = 0 RАХ×250 – Fr1×125 + Fa1×25 - Fk1×85 = 0

RАХ =

= 444,5 Н.

б) проверим правильность определения реакций

ΣХ = RАХ - Fr1 + Rcx - Fk1 =444,5 – 1500 + 755,5 + 300 = 0,

то есть реакции определены верно.

в) строим эпюру изгибающих моментов определяя их значение в характерных сечениях вала:

- в сечении А М

= 0;

- в сечении В действуют изгибающие моменты от реакций RAX и Fa1, М

= RAX×125×10-3 = 444,5×125×10-3 = 55,6 Н×м; М
= Fa1×25×10-3 = 4075×25×10-3 = 101,9 Н×м.

- в сечении С М

= Fk1×85×10-3 = 300×85×10-3 = 25,5 Н×м;

- в сечении D М

= 0.

В сечении В направления изгибающих моментов совпадают по направлению. Откладываем значение М

вверх от оси, а затем из этой же точки откладываем М
вверх, т.е.

М

= М
+ М
= 55,6 +101,9 = 157,5 Н×м;

г) проверим правильность определения момента в сечении В от сил
Fk1 и Rcx:

М

= Rcx×125×10-3 + Fk1×210×10-3 = 755,5×125×10-3 + 300×210×10-3 = 157,5 Н×м.

д) строим эпюру крутящих моментов (рис. 8.1.ж).

Передача его происходит вдоль вала до середины червяка от середины ступицы муфты Т1 = 14,0 Н×м.


6.2.2 Определим наибольшие напряжения изгиба и кручения для опасных сечений

Сечение В.

Суммарный изгибающий момент в сечении равен:

МизΣ =

= 163,5 Н×м.

Напряжения изгиба:

σиз =

,(7.5)

где df1 – диаметр впадин витка червяка, м.

σиз =

= 42,4 МПа.

Напряжения кручения:

(7.6)

где Т1 – крутящий момент на валу, Н×м.

= 1,80 МПа.

Определим эквивалентное напряжение по энергетической теории прочности и сравним его значение с допустимым:

σэкв =

= 42,5 МПа,

что меньше [σn]-1 = 124 МПа.

Сечение С.

Изгибающий момент в сечении:

Мизг = МизХ = 25,5 Н×м.

Напряжение изгиба определяется по формуле 8.5

σиз =

= 4,1 МПа.

Напряжение кручения находится по формуле 8.6.

= 1,1 МПа.

Эквивалентное напряжение:

σэкв =

= 4,52 МПа,

что гораздо меньше [σn]-1 = 124 МПа.

6.3 Приближенный расчет тихоходного вала

Примем материал для изготовления вала - сталь 40ХН, для которой σв = 920 МПа. Тогда допускаемое напряжение изгиба будет равняться по формуле 7.4.