1. Общая характеристика изделия и его материала
1.1 Анализ служебного назначения инструмента и требования, предъявляемые к нему по основным свойствам
Резьбонакатные ролики представляют собой цилиндрические диски, на наружной поверхности которых образована многозаходная резьба, либо кольцевые витки. Конструктивные элементы резьбонакатных роликов и их размеры зависят от принятого способа накатывания резьбы, размеров детали, модели применяемого станка. Ролики являются универсальным инструментом, так как позволяют накатывать резьбу высокой точности, различной длины с мелкими и крупными шагами, на весьма разнообразных материалах.
Ролик должен обладать твердостью после термообработки HRC 59–61. В процессе накатывания резьбы ролики увлекают заготовку, происходит процесс взаимной обкатки ролика и заготовки, в результате которого витки резьбы ролика вдавливаются в материал заготовки и как негативный отпечаток образуют на ней резьбу. В момент окончания обработки поверхности резьб роликов и обработанная поверхность резьбы детали взаимно касаются друг друга. Для обеспечения взаимного касания рассматриваемых винтовых поверхностей необходимо, чтобы угол подъема резьбы на роликах был равен углу подъема резьбы детали и ролики изготовлялись с левой резьбой при накатывании правой резьбы, и наоборот, с правой резьбой при накатывании левой резьбы.
Сталь Х12ВМ применяется для изготовления холодных штампов высокой устойчивости против истирания, не подвергающихся сильным ударам и толчкам, волочильных досок и волок, глазков для калибрования пруткового металла под накатку резьбы, гибочных и формовочных штампов, сложных кузовных штампов, матриц и пуансонов вырубных и просечных штампов, штамповок активной части электрических машин.
1.2 Анализ технологических свойств стали
Сталь Х12ВМ штамповая сталь холодного деформирования с повышенным содержанием хрома. Сталь Х12ВМ обладает хорошей теплостойкостью и прочностью, высокой прокаливаемостью, закаливаемостью и износостойкостю. Также эта сталь технологична, хорошо обрабатывается резанием и давлением, удовлетворительно шлифуется.
1.3 Анализ химического состава стали и его влияние на структуру, фазовый состав, основные и технологические свойства
Химический состав штамповых сталей соответствует ГОСТ 5950–2000
Химический состав, % (по массе) табл. 1
Химический элемент %
Углерод (С) 2.0–2.20
Вольфрам (W) 0.50–0.80
Ванадий (V) 0.15–0.30
Кремний (Si) 0.10–0.40
Медь (Cu) ≤ 0.30
Молибден (Mo) 0.60–0.90
Марганец (Mn) 0.15–0.45
Никель (Ni) ≤ 0.35
Фосфор (P) ≤ 0.030
Хром (Cr) 11.00–12.50
Сера (S) ≤ 0.030
Высокая твёрдость определяется высоким содержанием углерода. Стали с содержанием С 2–2.2% являются сталями ледебуритного класса, т.е. содержат в литом состоянии карбидную эвтектику, имеют после закалки твёрдость HRC 62–64. Эти стали содержат высокое количество карбидоборазующих элементов, повышенное содержание углерода и хрома обеспечивает образование повышенного кол-ва карбидов хрома (M7C3, M23C6). Общее количество карбидов составляет порядка 20%.
Основным легирующим элементом штамповой стали холодного деформирования является хром. Он повышает режущие свойства и износостойкость, увеличивает прочность и прокаливаемость стали, что особенно важно для крупных пуансонов и матриц. При наличии свыше 2,5% повышает устойчивость стали против отпуска, особенно при нагреве инструмента до температур, выше 300° С. Вместе с марганцем уменьшает коробление при закалке. Однако, у сталей с содержанием хрома 12% появляются недостатки. Резко выраженная карбидная неоднородность и повышенная склонность к коагуляции карбидов, способствующая разупрочнению сталей при нагреве.
Вольфрам(W) вводят для повышения твердости, износостойкости и прокаливаемости стали, улучшает режущую способность инструмента.
Ванадий(V) в штамповых сталях присутствует в карбиде VC и твердом растворе. Ванадий существенно уменьшает чувствительность штамповых сталей к перегреву, повышает теплостойкость сталей, улучшает распределение частиц избыточной фазы. При содержании ванадия 0,3 – 0,5% прочность и пластичность стали будет значительно выше, чем у высокованадиевых сталей.
Молибден(Mo) вводится в высокохромистую сталь для увеличения её вязкости и повышения прокаливаемости. Также молибден оказывает отрицательное влияние на окалиностойкость. Поэтому содержание молибдена в штамповых сталях ограничивается 1,4 – 1,8%.
Марганец(Mn) вводят для повышения прокаливаемости стали. В сочетании с хромом молибден уменьшает коробление при закалке, но увеличивает склонность к перегреву.
Кремний(Si) вводят, чтобы увеличить прокаливаемость стали, повысить стойкость против отпуска.
Таким образом сталь Х12ВМ с высоким содержанием хрома относится к полутеплостойким сталям. Они пригодны для изготовления штампов, пуансонов, роликов с твёрдостью 45…52 HRC и при температуре эксплуатации до 700оС.
2. Проектирование технологического процесса предварительной Т.О.
2.1 Определение структуры технологического процесса предварительной термической обработки
Сталь Х12ВМ по структурному признаку является сталью ледебуритного класса, т.е. содержит в литом состоянии карбидную эвтектику. Для измельчения карбидной эвтектики и снижения балла карбидной неоднородности стали ледебуритного класса перед отжигом обязательно куют в интервале температур 1100–850оС. В процессе ковки карбидная эвтектика дробится и более равномерно распределяется по структуре. Но тем не менее всё равно сохраняется карбидная неоднородность.
После ковки подвергаем заготовку из стали Х12ВМ изотермическому отжигу. Отжиг применяется с целью снятия внутренних напряжений, улучшения обрабатываемости резанием, получения мелко зернистой равномерной структуры стали для последующей качественной закалки инструмента, исправления дефектной структуры легированных сталей.
Предварительная термическая обработка проводится с целью получения оптимальных структуры и свойств стали в исходном состоянии.
2.2 Проектирование технологических операций ковки и отжига
2.2.1 Ковка
Применяется для улучшения структуры инструментальных сталей, а также для предания требуемой формы заготовкам инструмента.
Чтобы обеспечить высокое качество инструмента, следует нагреть заготовки по представленному ниже режиму. Ковка является ответственной операцией, при недостаточной поковки возникает карбидная ликвация – местное скопление карбидов в виде участков неразрешенной эвтектики.
А) Предварительный нагрев заготовок.
Заготовки погружаются в печь с температурой до 700оС. Выдержку заготовок (0,5 – 1 ч) проводят для выравнивания температуры, а затем осуществляют нагрев со скоростью 50 – 70 С/ч до 900 – 950оС.
При установке температуры начала ковки (1100оС для стали Х12ВМ) стремятся обеспечить достаточно низкую температуру конца ковки (850оС для стали Х12ВМ).
Температуры нагрева под ковку выбирают из условий достижения наиболее высокой пластичности в достаточно широком интервале температур. Эвтектики высокохромистых сталей, особенно в центральных зонах слитков, плавятся при 1190 – 1210оС и обуславливают высокую чувствительность их к перегреву и пережогу. По этой причине температура нагрева таких сталей не должна превышать 1140 – 1180оС, хотя максимальная пластичность поверхностных зон достигается при более высокой температуре.
Температуру окончания ковки выбирают с учётом того, чтобы избежать образования трещин и рванин вследствие значительного снижения пластичности металла и подготовки необходимой структуры (размера зерна аустенита, распределения и дисперсности избыточных фаз и др.), обеспечивающей высокие механические свойства после окончательной термической обработки. Для предупреждения возникновения трещин по мере понижения температуры металла необходимо уменьшать и величину единичных обжатий.
Указанные рекомендации по режимам нагрева и оптимальным температурным интервалам ковки вполне применимы и к условиям машиностроительных и инструментальных предприятий. В этом случае ковку заготовок в большинстве случаев выполняют не столько с целью получения необходимых размеров, сколько для улучшения структуры и свойств, так как сортовой металл в состоянии поставки имеет развитую структурную полосчатость и высокую анизотропию свойств в поперечном и продольном направлениях. Это, как было отмечено, приводит к нежелательным последствиям как при термической обработке, так и при эксплуатации инструментов.
Б) Окончательный нагрев.
После предварительного нагрева в первой печи заготовка переносится во вторую печь для окончательного нагрева до температур начала ковки.
Ковка заготовок инструментов из штамповых сталей выполняют на достаточно мощном кузнечном оборудовании, обеспечивающем деформацию металла по всему сечению поковки. Во избежании трещин заготовки непосредственно после ковки следует подвергать специальному охлаждению в колодцах при 750 – 800 оС; после чего заготовки непосредственно поступают на отжиг.
После ковки штамповой стали достигается твёрдость HRC 52 – 54. Для предварительного нагрева используется печь ПН – 12. Это наиболее простая и надёжная, по способу герметизации, камерная электропечь с подвижным ободом. Окончательный нагрев будем проводить в камерной печи Г – 30 (рис. 2, лист 1), высокотемпературной с защитой атмосферы.
Максимальная рабочая температура печи Г – 30 1300оС, ПН – 12 950оС.
2.2.2 Отжиг
Отжиг заготовок, предназначенных для изготовления инструмента, производится в целях:
● получения оптимальной твёрдости, обеспечивающей хорошую обрабатываемость стали резанием;
● получения мелкозернистой равномерной структуры стали перед последующей закалкой инструмента;