Смекни!
smekni.com

Щелочная агрессия в доменной плавке (стр. 4 из 6)

Сведения о количестве щелочей, накапливающихся и циркулирующих в рабочем пространстве доменных печей, в доступной литературе скудны и естественно, что роль этой массы во вредном проявлении щелочей должным образом не оценивалась [8].

Отсутствие данных о характере накопления и количестве щелочей в зонах циркуляции свидетельствует о том, что также не проводились исследования с целью оценки воздействия на поведение щелочей режима работы доменной печи, в первую очередь, теплового состояния верхней части шахты и колошника.

Практические исследования, проведенные на доменных печи ОАО «ММК», показывают, что масса циркулирующих веществ в десятки и сотни раз превосходит количество их в шихте. Поэтому при восстановлении в нижней части печи источником высокой концентрации паров этих веществ является именно циркулирующая масса. Зависимость формирования этой массы от режима работы печи определяет то, что пределы поступления щелочей в доменные печи (2,5-7,5 кг/т- ч) отличаются весьма значительно [9]. В доменные печи ОАО «ММК» щелочи поступает в количестве 6-7 кг/т- ч.

По мнению сотрудников ММК, в условиях работы доменного цеха комбината существуют резервы для снижения вредного воздействия щелочей на доменный процесс и состояние доменных печей. Это проведение мероприятий по эпизодическому удалению щелочей со шлаком, но, прежде всего, поиск возможности удаления их через колошник путем разрушения циркуляционных контуров [8].

В качестве базовых операций при разработке технологии удаления щелочей через колошник были выбраны технологии «сухой выдувки», применяющейся в доменном цехе для удаления цинка. С этой целью был проведен ряд опытно-промышленных испытаний, целью которых была оценка эффективности технологии применительно к щелочам и оптимизация ее для максимально возможного удаления щелочей через колошник.

Испытывались различные варианты технологии: без опускания уровня засыпи шихты с формированием буферного слоя шихты при различном количестве фракционированного шлакового щебня и с опусканием уровня на различную глубину, с восстановлением рабочего положения уровня загрузки нормальной шихты или материалов буферного слоя. Новым элементом при опускании уровня засыпи является охлаждение колошникового газа водой, необходимое для обеспечения повышенной температуры газа на выходе из слоя.

При проведении мероприятий каждый раз отбирались пробы шламовой воды с целью оценки динамики и количества выходящих из печи щелочей.

Естественно при использовании различных вариантов технологии степень удаления щелочей из доменной печи также была неодинаковой. К тому же, степень удаления щелочей определялась и индивидуальным режимом работы доменных печей [9].

Первые испытания были проведены на доменной печи №8 в июне 2001 г. Выполнение комплекса операций как по регламенту, так и по поддержанию параметров работы печи, было нормальным. Отбор проб шламов проводился через каждые 10 минут в течение 3-х часов, что оказалось недостаточным. Содержание щелочей определялось как в твердой взвеси, так и в шламовой воде. Были получены положительные результаты.

Положительные результаты - увеличение выхода щелочей через колошник - были получены и при проведении дальнейших испытаний.

При использовании технологии без опускания уровня засыпи, только за счет увеличения размера межкусковых пустот, содержание щелочей в твердой взвеси увеличивалось в среднем: натрия - в 2,5-3,0 и калия - в 4,0-5,0 раза. Максимум увеличения суммарного выхода щело чей достигал несколько десятков раз. Так, например, на доменной печи №10 количество щелочей в твердой взвеси увеличилось почти в 10 раз, в то время как в воде растворилось больше только в 2 раза.

Влияние режима работы доменной печи на выход щелочей наиболее характерно проявился на доменной печи № 4, когда увеличение выхода щелочей было более значительным - до 0,9 % в шламовой воде и до 9,9 % в твердой взвеси даже без опускания уровня засыпи. Выход их увеличивался при использовании вариантов технологий с опусканием уровня.

В полученных данных отразилось различие свойств калия и натрия, качественно проявляющееся независимо от варианта применяемо, технологии: остаточное количество щелочей в твердой взвеси увеличивалось до 4-5 раз, в то время как их количество, растворившееся в воде увеличивалось в десятки раз, особенно количество калия.

Результаты исследований позволяют предполагать, что в столбе шихты натрий и его соединения вряд ли образуют ярко выраженные контуры циркуляции. Если они и образуются, то менее массивные, чем контуры калия и располагаются ниже его контуров.

В пользу этих соображений говорит то, что, при примерно разном приходе щелочей с шихтой, выход натрия через колошник в большинстве определений заметно превышает выход калия (содержание в воде газоочистки и твердой взвеси шлама) [8].

Здесь проявляются два установленных фактора:

- более слабая способность натрия проникать в щели и полости огнеупорной футеровки при высоких температурах (10000С и выше), когда натрий не может образовывать какие-либо соединения. Эта способность, видимо, проявляется и при относительно низких температурах, когда натрий может создавать цианиды и карбонаты. Меньшее осаждение натрия в порах кусков шихты должно приводить к большему его выходу с колошниковым газом;

- способность натрия в меньшей мере оседать в огнеупорной футеровке, накапливаться в нижней части доменной печи из-за слаборазвитых нисходящих ветвей циркуляции. Этим, видимо, можно объяснить тот факт, что также в большинстве измерений его содержание в шлаках было меньше, чем содержание калия. Об этом говорят также установленные экспериментально факты меньшего содержания натрия в слоях шихты в нижней части шахты и распаре.

Подобные данные в литературе до сих пор слабо комментированы, особенно с позиции циркуляции веществ в рабочем пространстве доменной печи. Например, не было никакого объяснения тому, что невязка балансов натрия в большинстве случаев меньше невязки балансов калия. Это различие полностью увязывается с количеством циркулирующих веществ и распределением их вторичных форм в рабочем объеме.

Если эти предположения, основанные на литературных данных и результатах наших исследований на доменных печах ОАО «ММК» правильны, то может быть сформулирован вывод о том, что основным фактором, воздействующим на состояние доменной печи и показатели процесса, является калий и его вторичные соединения. Именно это должно в первую очередь учитываться при обосновании и отработке элементов технологий удаления щелочей из доменной печи [8].

Особенностью щелочей является то, что они в значительной мере створяются в шламовой воде. При 20оС растворимость их цианидов, хлоридов относительно близка. Карбонат калия в тех же условиях растворяется лучше карбоната натрия. Температура воды воздействует на растворимость соединений калия в большей мере, чем натрия.

Так, растворимость цианида, карбоната и хлорида калия при повышении температуры воды от 20 до 100оС возрастает соответственно в 1,76- 1,40 и в 1,64 раза. В тех же условиях растворимость соединений натрия почти не увеличивается. Этим данным соответствовал характер изменения и соотношения содержания щелочей в воде газоочистки почти всех доменных печей, на которых проводилась отработка технологий удаления щелочей. Поскольку большинство печей имеют одинаковый объем и характер выхода щелочей из них подобен, в качестве примера для иллюстрации и комментария представлены результаты, полученные на доменной печи №8 (рис. 1 и 2) [Приложение 1].

При обычной температуре шламовой воды содержание в ней натрия было почти в 2 раза выше, чем калия. Повышение температуры воды (вследствие повышения температуры колошникового газа при опускании уровня засыпи) изменило соотношение. Содержание натрия увеличилось всего в 1,3 раза (с 46,5 до 60,6 г/м3), в то время как содержание калия увеличилось в 4,1 раза (с 22,5 до 92,6 г/м3). Охлаждение воды при снижении температуры колошникового газа привело к снижению содержания растворенных в ней щелочей.

По полученным экспериментальным и справочным данным можно ориентировочно судить о том, в каких соединениях находились калий и натрий в верхней части шахты и на колошнике при опускании уровня засыпи, но вполне вероятно, что и при нормальном его положении.

Растворимость карбоната калия при низкой температуре воды в 5 раз выше растворимости карбоната натрия. Видимо, поэтому при нормальной температуре воды (в начальный момент опускания уровня засыпи шихты) карбонат калия присутствует, но в незначительной степени, поскольку в этот период количество растворенного калия почти в два раза меньше количества натрия. Такое соотношение щелочей, по-видимому, определил выход их цианидов. На это указывает более быстрый рост содержания калия при повышении температуры воды, что обусловлено преимущественным увеличением растворимости его цианида. То же самое, но в меньшей степени, относится и к хлоридам, так как пределы их растворимости меньше, чем цианидов [8].

Характер выхода калия с колошниковым газом, растворения его в воде газоочистки, остаточного содержания в твердой взвеси показывает, что воздействие изменения газодинамических свойств столба шихтовых материалов при загрузке фракционированного шлакового на контур циркуляции калия весьма эффективно (рис. 1 и 2) [Приложение 1].

О совместном влиянии газодинамических свойств и температуры колошникового газа говорит тенденция изменения линии, отражающей количество растворенного калия в воде газоочистки – постепенное повышение растворенного вещества при увеличении толщины шлаковой пробки. «Зубчатый» характер линии определяется изменением положением уровня засыпи шихты: последовательным опусканием с периодическим частичным повышением на 0,35-0,55 м при загрузке охлаждающих подач фракционированного шлакового щебня и кокса. Температура газа после загрузки таких подач снижалась с 500-550оС до 310-350оС, что отражалось колебанием выхода калия из слоя [8].