По характеру кривой, отражающей содержание калия (рис. 1 и 2) [Приложение 1], ориентировочно можно судить о расположении зоны его циркуляции. В начальный период опускания уровня засыпи шихты четкая связь между моментом загрузки охлаждающих подач и содержанием калия в воде не наблюдается, а по отношению к остаточному содержанию в твердой взвеси она прослеживается.
Разрушение контура циркуляции калия, видимо, было значительным, так как последующие подачи слабо воздействовали на его вы ход. К тому же, в этом районе должна разрываться не только ветвь циркуляции, образующаяся за счет осаждения твердых частиц в порах кус ков шихты, но и ветвь жидких цианидов калия (температура плавления или кристаллизации 634°С), осаждающихся на поверхности кусков [8].
Загрузка подач, содержащих железорудные материалы, привела к резкому снижению газопроницаемости слоя и температуры газа на выходе из него. Выход калия также резко уменьшился. После нескольких нормальных подач количество растворенного калия уменьшилось с 92 до 20,5 г/м3. Соответственно увеличилось содержание его в твердой взвеси вследствие снижения температуры воды. К сожалению, в данном случае невозможно определить, насколько последние величины близки к соответствующим нормальной работе печи, так как отбор проб был прекращен раньше необходимого момента, а также не вызывала доверия контрольная проба шламов.
Характер линий, отражающих поведение натрия при опускании уровня засыпи шихты, вполне согласуется с поведением калия, но имеет и свои особенности. К ним можно отнести низкую растворимость в воде, кроме цианида, слабую зависимость ее от температуры и менее развитую зону циркуляции в верхней части шахты.
В начальный период опускания уровня засыпи содержание натрия в воде газоочистки было выше. Это может быть, если натрий выходил в виде цианида и хлорида, но не карбоната, чему соответствует незначительное изменение растворенного его количества при повышении температуры воды.
Пониженная растворимость и меньший выход натрия обусловили большую степень усреднения его концентрации в воде, на что указывает характер изменения (синхронно с калием) остаточного содержания в твердой взвеси [8].
Выход натрия, как и калия, зависит от температуры колошникового газа. В начальный период опускания уровня засыпи шихты, состоящей из железорудных материалов, содержание его в воде и в твердой взвеси повышалось. Во взвеси увеличилось до 1,1-1,2 %, а затем, за счет вымывания резко снизилось до 0,3-0,4 %. Снижение температур воды после загрузки нормальных подач снова обусловило повышение содержания натрия в твердой взвеси до 1,0 %. Синхронное изменение содержания калия и натрия в твердой взвеси указывает на то, что выход последнего также зависит и от газопроницаемости шихты.
Характерным примером, иллюстрирующим влияние температуры газа в шахте и на колошнике на накопление щелочей и расположении зоны их циркуляции, являются результаты, полученные при удалении их из доменной печи №4 (18.11.01). Уровень засыпи шихты при этом, опускался и выход щелочей зависел только от газодинамических свойств буферного слоя (увеличение размера межкусковых пустот) в участке столба шихты 6-7 м от рабочего положения уровня засыпи.
Температура колошникового газа составляла 220-240°С, что было на 50-80оС ниже соответствующих температур на других печей такого же объема [8].
После первых подач материалов буферного слоя, увеличение выхода щелочей было умеренным: в 2,5-3,0 раза - в твердой взвеси, в 3-4 раза - в шламовой воде. Затем выход увеличился более резко: достиг 9,9 % в твердой взвеси и 0,93 кг/м3 в воде. Эти результаты указывают на следующее:
- температура газа является существенным фактором формирования и расположения зоны циркуляции щелочей. Различие всего в 50-80°С обусловило то, что значительная масса циркулирующих щелочей концентрировалась на достаточно большом расстоянии от рабочего положения уровня засыпи. Разрушение контуров циркуляции при опускании нижней границы буферного слоя (при продолжении его наращивания) привело практически к выбросу накопившейся массы из слоя из печи;
- газодинамические свойства столба материалов, следовательно, и их фракционный состав и характер поверхности кусков, также естественно определяют выход щелочей через колошник. По изменению их выхода видно, что после первых же подач нормальной железосодержащей шихты на поверхность буферного слоя вынос щелочей заметно снизился;
- растворимость щелочей и особенно калия проявляется большей мере, если повышение температуры колошникового газа от исходной до предельной также более существенно. В результате теплобмена газа с чем же количеством воды в скруббере температура ее в выходе из скруббера повышается также значительно и в ней растворяется большее количество щелочей.
При утилизации шламов и не замкнутой системе водоснабжения газоочисток доменных печей растворимость щелочей оказывается полезной их особенностью, так как в результате этого щелочи выводятся из циркуляции в аглодоменном переделе. Необходимо только обеспечить максимально возможный выход их через колошник при отсутствии возможности повышенного удаления их со шлаком.
Судя по полученным результатам, удаление щелочей с более существенным понижением уровня засыпи шихты обеспечивает повышенный их выход с газовым потоком. При этом уверенно можно предполагать, что контуры их циркуляции, особенно калия, разрушаются.
По ориентировочным расчетам, в ходе мероприятия на домен ной печи №8 с водой газоочистки ушло более 250 кг щелочей. Если учитывать, что в обычных условиях работы печи с водой уходит до 50 кг, то выдувка стимулировала дополнительное растворение в воде не менее 200 кг щелочей.
В твердой взвеси осталось не менее 230 кг, причем в какой-то части также за счет повышенного выхода. Трудности отбора представительной пробы сухой колошниковой пыли не позволили определить в ней действительное количество щелочей и оно не учтено. Химический анализ пробы пыли, отобранной на следующий день во время ее труски, показал, что в ней содержалось 0,20 % оксида натрия (в пересчете), 0,15 % оксида калия и 0,51 % цинка. Судя по содержанию цинка, - это пыль текущего производства. По этим данным с сухой пылью вышло 115-120 кг, что явно не соответствовало реальности [8].
В сумме за контрольный период (3 часа) повышение выхода щелочей составило около 450 кг. Действительный выход их был значительно больше, так как оказалось, что отбор проб был прекращен преждевременно. На это указывал анализ последней пробы шламовой воды и твердой взвеси.
По первому и дальнейшим испытаниям технологии можно судить о том, что базовые основы «сухой выдувки» вполне приемлемы для удаления щелочей. С этих позиций технология является комплексной поскольку независимо от причины ее применения - удаление щелочей - из печи одновременно удаляется и цинк.
Учитывая комплексность, в разработке необходимых технологических приемов необходимо предусматривать обеспечение вывода прежде всего щелочей, так как контуры их циркуляции располагаются ниже контуров циркуляции цинка, что обусловлено более высокими значениями температур переходных процессов. С этих позиций значение температуры колошникового газа 450-500°С должно быть повышено до 750-800°С. Такой разбег температур на выходе из слоя шихты определяет температура плавления соединений калия и натрия.
Можно быть уверенным, что реальные температуры переходных процессов, происходящих с парами щелочей, их цианидов и хлоридов, не соответствуют стандартным значениям, так как парциальное давление их значительно ниже единицы. Не исключено, что пары щелочей и их соединений сохраняются вплоть до температуры кристаллизации (плавления). К тому же, при высокой скорости газового потока переходные процессы растягиваются выше горизонта с температурой, соответствующей стандартной. В этом отношении при температуре газа на выходе из слоя 750-800°С охватывает температуру плавления не только цианидов (634 и 562°С), но и карбонатов щелочей (891 и 854°С). В таких условиях газообразные щелочи будут выноситься за пределы слоя и их твердые фазы будут возникать в свободном пространстве печи [8].
В любом варианте «сухой» выдувки повышение температуры газового потока на выходе из слоя при опущенном уровне засыпи предотвращается загрузкой охлаждающих подач, которые, кроме того удерживают уровень засыпи относительно заданного горизонта. Поэтому, при использовании какого-либо из вариантов технологии, повышенный выход щелочей из печи обеспечивается, но он явно недостаточен так как повышение температуры колошникового газа ограничено технологической инструкцией предельным значением 500оС.
Ограничение температуры на колошнике и относительно высокие значения реперных температур переходных процессов, возникающих с щелочами, стали побудительной причиной разработки технологии их удаления, отличающейся от технологии «сухой» выдувки. Смысл новой разработки заключается в следующем: обеспечение выходе из буферного слоя температуры газа 750-780°С, что обеспечивает вывод области переходных процессов за пределы столба, а газ на колошнике охлаждать до 500оС подачей воды.
Предложенный комплекс операций в случае подачи воды не большой конус, а через специальное устройство, может быть дополнительной возможностью некоторой выдержки уровня засыпи в опущенном стоянии загрузкой нескольких подач уменьшенного объема фракционированного шлакового щебня и кокса. Способ был испытан на домной печи №8 Магнитогорского металлургического комбината [8].
Способ доменной плавки щелочь - и цинкосодержащих шихт