Смекни!
smekni.com

Экспериментальное исследование сварочных процессов (стр. 1 из 5)

Содержание

Введение

1. Характеристика свойств свариваемого металла

1.1 Основные параметры и константы свариваемого металла

1.2 Структура и свойства свариваемого металла

1.3 Оценка свариваемости металла

2. Исследование процессов взаимодействия между металлом, газом и шлаком

2.1 Характеристика защиты металла от взаимодействия с окружающей средой

2.2 Описание металлургических процессов

2.3 Термодинамическое исследование металлургического процесса

3. Расчёт тепловых процессов

3.1 Выбор расчётной схемы

3.2 Расчёт скорости охлаждения

3.3 Расчёт распределения температур вдоль оси шва

3.4 Расчёт изотерм на поверхности свариваемого материала

3.5 Расчёт распределения температур в поперечном сечении шва

3.6 Определение протяжённости отдельных участков в ЗТВ

3.7 Распределение максимальных температур в поперечном сечении шва

4. Анализ процесса формирования первичной структуры сварного соединения

5. Анализ процессов в ЗТВ

6. Оценка технологической прочности сварного соединения

6.1 Горячие трещины сварного соединения

6.2 Холодные трещины сварного соединения

Заключение

Cписок использованной литературы

Введение

Курсовая работа по дисциплине «Теория сварочных процессов» является заключительным этапом освоения дисциплины. Целью курсовой работы является приобретение навыков теоретического и экспериментального исследования сварочных процессов и поиска путей управления этими процессами для получения качественных сварных соединений.

Среди основных задач работы можно выделить следующие:

- исследование и описание физико-химических процессов взаимодействия металла с газом и шлаком;

- исследование процессов нагрева, плавления и охлаждения основного металла при сварке;

- изучение и описание процессов кристаллизации металла при образовании сварного соединения;

- разработка способов повышения технологической прочности в процессе кристаллизации сварного шва и остывания соединения.


1. Характеристика свойств свариваемого металла

1.1 Основные параметры и константы свариваемого металла

Сталь 30ХМА принадлежит к среднеуглеродистым низколегированным сталям. Для этой стали приблизительный химический состав и основные свойства указаны в нижеприведенных таблицах:

Таблица 1.Химический состав стали и основные показатели.

С Mn Si P S Cr Ni Cu
0,26-0,33 0,40-0,70 0,17-0,37 ≤0,025 ≤0,025 0,8-1,1 0,3 0,3

Таблица 1.2.Основные свойства стали.

Δωопт, град/с АС1 АС3 Мн Тнир
0,1-10 757 807 350 850

Таблица 1.3. Теплофизические коэффициенты:

λ – коэффициент теплопроводности 41,9 Вт/м·град
а – коэффициент температуропроводности
сρ – объёмная теплоёмкость 4,8 Дж/м3·град
α – коэффициент теплоотдачи 60 м2

1.2 Структура и свойства свариваемого металла

Сталь 30ХМА характеризуется резко выраженной неравномерностью распределения серы и фосфора по толщине проката. Местная повышенная концентрация серы может привести к образованию кристаллизационных трещин в шве и околошовной зоне. Введение в низколегированные стали небольшого количества меди (0,3—0,4%) повышает стойкость стали против коррозии (атмосферной и в морской воде). Для изготовления сварных конструкций низколегированные стали используют в горячекатаном состоянии. Легирующие элементы, вводимые в сталь 30ХМА, образуя с железом, углеродом и другими элементами твердые растворы и химические соединения, изменяют ее свойства. Это повышает, механические свойства стали и, вчастности, снижает порог хладноломкости. В результате появляется возможность снизить массу конструкций. В промышленности при производстве сварных конструкций широко используют среднеуглеродистые, низколегированные стали. Суммарное содержание легирующих элементов в этих сталях не превышает 4,0% (не считая углерода), а углерода 0,3%.

Таблица 1.2.1. - Механические свойства стали 30ХМА:

Механические свойства
σв,МПа σт,МПа δ, % , %
800 600 12 50

1.3 Оценка свариваемости металла

Рассматриваемая сталь 30ХМА обладает ограниченной свариваемостью. Технология её сварки должна обеспечивать определенный комплекс требований, основными из которых являются равнопрочность сварного соединения с основным металлом и отсутствие дефектов в сварном шве. Для этого механические свойства металла шва и околошовной зоны должны быть не ниже нижнего предела механических свойств основного металла. В некоторых случаях конкретные условия работы конструкций допускают снижение отдельных показателей механических свойств сварного соединения. Однако в большинстве случаев, особенно пpи сварке ответственных конструкций, швы не должны иметь трещин, непроваров, пор, подрезов. Геометрические размеры и форма швов должны соответствовать требуемым. Сварное соединение должно быть стойким против перехода в хрупкое состояние. В отдельных случаях к сварному соединению предъявляют дополнительные требования (работоспособность при вибрационных и ударных нагрузках, пониженных температурах и т. д.). Однако во всех случаях технология должна обеспечивать максимальную производительность и экономичность процесса сварки при требуемой надежности и долговечности конструкции.

Механические свойства металла шва и сварного соединения зависят от его структуры, которая определяется химическим составом, режимом сварки и предыдущей и последующей термической обработки. При сварке рассматриваемой стали, состав металла шва незначительно отличается от состава основного металла. В металле шва меньше углерода для предупреждения образования структур закалочного характера при повышенных скоростях охлаждения. Возможное снижение прочности металла шва, вызванное уменьшением содержания углерода, компенсируется легированием металла через проволоку, покрытие или флюс марганцем и кремнием.

Повышенные скорости охлаждения металла шва способствуют увеличению его прочности, однако при этом снижаются пластические свойства и ударная вязкость. Скорость охлаждения металла шва определяется толщиной свариваемого металла, конструкцией сварного соединения, режимом сварки и начальной температурой изделия.

Рекомендуется подогрев и последующая термообработка.

Способы сварки: РД, РАД, АФ, КТ.


2. Исследование процессов взаимодействия между металлом, газом и шлаком

2.1 Характеристика защиты металла от взаимодействия с окружающей средой

Сварка плавлением - высокотемпературный процесс, сопровождающийся изменением состава металла сварного соединения, а следовательно, и его свойств, в результате взаимодействия с окружающей средой (атмосферой). Высокая восстановительная активность металлов приводит к образованию оксидов, нитридов и гидридов, а так как скорость химических реакций и диффузионных процессов при температурах сварочного цикла очень высокая, то даже в очень ограниченное время могут, произойти существенные и нежелательные изменения состава металла шва. Широкое применение сварки в различных отраслях промышленности, строительства и транспорта стало возможным только тогда, когда были разработаны надежные методы защиты зоны сварки от атмосферы.

Рассматривая различные виды сварки, можно выделить четыре способа защиты зоны сварки: 1) шлаковая защита, 2) газовая , 3) газошлаковая, 4) вакуумная.

Смешанная газошлаковая защита сварочной ванны.

Исторически этот метод появился раньше всех. Он реализуется при ручной дуговой сварке толстопокрытыми или качественными электродами, промышленное применение которых началось в середине 20-х годов.

Свойства металла шва, наплавленного электродом без покрытия, очень низки. Состав покрытия электродов определяется рядом функций, которые он должен выполнять: защита зоны сварки от кислорода и азота воздуха, раскисление металла сварочной ванны, легирование ее нужными компонентами, стабилизация дугового разряда. Производство электродов сводится к нанесению на стальной стержень электродного покрытия определенного состава. Электродные покрытия состоят из целого ряда компонентов, которые условно можно разделить на ионизирующие, шлакообразующие, газообразующие, раскислители, легирующие и вяжущие.

Ионизирующие компоненты – соединения, содержащие ионы щелочных металлов: Na2CO3, K2CO3. пары этих соединений снижают сопротивление дугового промежутка и делают дуговой разряд устойчивым.

Шлакообразующие – минералы: полевой шпат K2O3.Al2O3.6SiO2; мрамор, мел, CaCO3, магнезит MgCO3, глинозем Al2O3, флюорит CaF2, рутил TiO2, кварцевый песок SiO2 и иногда гематит Fe2O3. При сплавлении эти компоненты образуют шлаки различного состава и различной основности.

Газообразующие – вещества, разлагающиеся с выделением большого объема газа – мрамор, мел или органические вещества: декстрин, крахмал, целлюлоза, которые, сгорая в электрической дуге, дают много газообразных продуктов – CO2; CO; H2; H2O/

Раскислители и легирующие компоненты – металлические порошки или порошки ферросплавов – ферромарганец, ферросилиций, феррохром, ферровольфрам и др. Ферросплавы – это лигатуры, быстро растворяющиеся в жидкой стали. Только никель вводят в виде порошка металла, так как он при сварке почти не окисляется. Раскислителями, кроме ферромарганца и ферросилиция, могут быть ферротитан и алюминий.