Смекни!
smekni.com

Электрические машины (стр. 2 из 3)

∆u = 0,4 – толщина пазовой изоляции;

∆b = 0,2 – (для h > 100) припуск на расшихтовку сердечника.

Свободная площадь паза статора для двухслойной обмотки.

S"nc = S'nc – 0,75 · ∆u(b'11 + b'12) = 302,73 – 0,75 · 0,4(8,1 + 11) = 297мм2

Коэффициент заполнения паза статора.

kз = (d2uз · Un · nэл)/ S"nc = (1,8952 · 18 · 3)/ 297 = 0,7,

где Snc = S"nc – для двухслойной обмотки.

Значения коэффициента заполнения должны находиться в пределах

kз = (0,7 ÷ 0,73)

Ток в стержне ротора.

I2 = 0,9(6 · w1 · kоб) · I1н/ Z2 = 0,9(6 · 72 · 0,882) · 91,44/ 82 = 382,4А

Плотность тока в стержне ротора.

J2 = I2/ qc = 382,4/ 96 = 3,98А

Плотность тока в стержне должна быть в пределах J2 = (2 ÷ 4)А/мм2

Ток кольца короткозамкнутой обмотки ротора.

Iкл = I2/ ∆ = 382,4/ 0,153 = 2499,35А,

где ∆ = 2sin(180˚ · p/Z2) = 2sin(180˚ · 2/ 82) = 0,153

Плотность тока в кольце.Jкл = Iкл / qкл = 2499,35/ 1554 = 1,61А/мм2

Плотность тока в кольце должна быть в пределах Jкл = (1 ÷ 4,5) А/мм2


4. Расчет магнитной цепи

Расчет магнитной цепи проводится для определения МДС и намагничивающего тока статора, необходимого для создания в двигателе требуемого магнитного потока. На рисунке 4 представлена расчетная часть магнитной цепи четырехполюсной машины, которая состоит из пяти последовательно соединенных участков: воздушного зазора, зубцовых слоев статора и ротора, спинки статора и ротора. МДС на магнитную цепь, на пару полюсов Fц определяется как сумма магнитных напряжений всех перечисленных участков магнитной цепи.

Рис. 4 – Магнитная цепь асинхронного двигателя.

Fц = Fδ + Fz1 + Fz2 + Fa + FJ

Магнитное напряжение воздушного зазора на пару полюсов.

Fδ = 1,6 · Bδ · δ · kδ · 106 = 1,6 · 0,6 · 0,001 · 1,31 · 106 = 1257,7А,


где kδ – коэффициент воздушного зазора, учитывающий зубчатость статора и ротора.

kδ = kδ1 · kδ2 = 1,22 · 1,07 = 1,31

Магнитное напряжение зубцового слоя статора.

Fz1 = Hz1 · Lz1 = 584 · 0,082 = 47,89А,

где Hz1 – напряженность магнитного поля в зубцах статора, при трапецеидальных пазах определяется по приложению В для выбранной марки стали и для индукции рассчитанной в п. 3.2.7.

Hz1 = 584А/м

Lz1 = 2 · hz1 = 2 · 0,041 = 0,082м

Магнитное напряжение зубцового слоя ротора.

Fz2 = Hz2 · Lz2 = 360 · 0,082 = 29,52А,

где Hz2 – напряженность магнитного поля в зубцах ротора, определяется по приложению В для выбранной марки стали и для индукции рассчитанной в п. 3.2.7.

Hz2 = 360А/м

Lz2 = 2 · hz2 = 2 · 0,041 = 0,082м


Магнитное напряжение ярма статора.

Fa = Ha · La = 206 · 0,37 = 76,22А,

где Ha – определяется по приложению В для выбранной марки стали и для индукции рассчитанной в п. 3.2.8.

Ha = 206А/м

La = π(Da – ha)/ 2p = 3,14(0,52 – 0,052)/ 2 · 2 = 0,37м

Магнитное напряжение ярма ротора.

FJ = HJ · LJ = 113 · 0,14 = 15,82А,

где HJ – определяется по приложению В для выбранной марки столи и для индукции рассчитанной в п. 3.2.8.

HJ = 113А/м

LJ = π(D2 – 2hz2 – hJ)/ 2p = 3,14(0,333 – 2 · 0,041 – 0,0756)/ 2 · 2 = 0,14м

Суммарное магнитное напряжение магнитной цепи.

Fц = Fδ + Fz1 + Fz2 + Fa + FJ = 1257,7 + 47,89 + 29,52 + 76,22 + 15,82 =

= 1427,15А

Коэффициент насыщения магнитной цепи двигателя.

kµ = Fц / Fδ = 1427,15 / 1257,7 = 1,13

kµ = (1,1 ÷ 1,6)


Расчет намагничивающего тока

Намагничивающий ток.

Относительное значение намагничивающего тока.

Iµ* = Iµ/ I1н = 16,65/ 91,44 = 0,18

5. Активные и индуктивные сопротивления обмоток статора и ротора

Сопротивление обмоток статора.

Среднее значение зубцового деления статора.

tср1 = π(D + hz1)/ Z1 = 3,14(0,335 + 0,041)/ 72 = 0,016м

Средняя ширина катушки (секции) статора.

bср1 = tср1 · y = 0,016 · 14 = 0,224м,

где y – шаг обмотки.

Средняя длина лобовой части (секции) статора.

lл1 = (1,16 + 0,14p)bср1 = (1,16 + 0,14 · 2) · 0,224 = 0,323м

Средняя длина витка обмотки статора.

lср1 = 2(l1 +lл1) = 2(0,151 + 0,323) = 0,948м


Длина вылета лобовой части обмотки статора.

lb1 = (0,12 + 0,15p) · bср1 + 0,01 = (0,12 + 0,15 · 2) · 0,224 + 0,01 = 0,104м

Длина проводников фазы обмотки.

L1 = lср1 · w1 = 0,948 · 72 = 68,26м

Активное сопротивление обмотки статора, приведенное к рабочей температуре 115ºС (для класса изоляции F).

ρ115
,

где ρ115 = 1/41 (Ом/мм2) – удельное сопротивление меди при 115˚.

То же в относительных единицах.

r1* = r1 · I1н/U1н = 0,11 · 91,44/ 220 = 0,05,

где I1н и U1н – номинальные значения фазного тока и напряжения.

Индуктивное сопротивление рассеяния обмотки статора зависит от проводимостей: пазового рассеяния, дифференциального рассеяния и рассеяния лобовых частей. Коэффициент магнитной проводимости пазового рассеяния при трапецеидальном пазе .


где kβ1, k'β1 – коэффициенты, учитывающие укорочение шага обмотки β, определяется по таблице 3.

Коэффициент проводимости дифференциального рассеяния статора.

λg1 = 0,9t1 · (q · kоб1)2 · kσ · kш1/δ · kδ = 0,9 · 0,0146 · (6 · 0,882)2 · 0,003

· 1,34/ 0,001 · 1,31 = 1,13

где kσ = ƒ(q) – коэффициент дифференциального рассеяния, определяется по таблице 4.

kш1 – коэффициент, учитывающий влияние открытия паза.

kш1 = (1 – 0,033) · b2ш1/t1 · δ = (1 – 0,033) · 0,00452/ 0,0146 · 0,001 = 1,34

Коэффициент проводимости рассеяния лобовых частей обмотки статора.

λл1 = 0,34(q/l1) · (lл1 – 0,064 · β · τ) = 0,34(6/0,151) · (0,323 – 0,64 · 0,75 ·

· 0,263) = 2,6

Коэффициент магнитной проводимости обмотки статора.

λ1 = λn1 + λg1 + λл1 = 1,74 + 1,13 + 2,6 = 5,47

Индуктивное сопротивление рассеяния фазы обмотки статора.


То же в относительных единицах.

x1* = x1 · I1н/U1н = 0,28 · 91,44/220 = 0,12

Индуктивное сопротивление взаимной индукции основного магнитного потока.

x12 = U1н/Iµ = 220/16.65 = 13,2Ом

Сопротивление обмотки ротора.

Активное сопротивление стержня.

rc= ρ115 · l2/qc =

,

где ρ115 = 1/20,5(Ом/мм2) удельное сопротивление литой алюминиевой обмотки ротора при 115˚. Сопротивление участка кольца между двумя соседними стержнями.

где Dкл.ср – средний диаметр кольца.

Dкл.ср = D2 – bкл = 0,333 – 0,042 = 0,291

Коэффициент приведения тока кольца к току стержня.

∆ = 2Sin (πp/Z2) = 2Sin (3,14 · 2/82) = 0,153


Сопротивление кольца, приведенное к стержню. rкл.пр = rкл /∆2 = 0,00000035/0,1532 = 1,5 · 10-5 Ом

Активное сопротивление обмотки ротора (стержня и двух колец).

r2 = rc + 2 · rкл.пр = 7,9 · 10-5 + 2 · 1,5 · 10-5 = 10,9 · 10-5 Ом

Активное сопротивление обмотки ротора, приведенное к обмотке статора.

То же в относительных единицах.

r'2* = r'2 · I1н/U1н = 0,064 · 91,44/220 = 0,027

Коэффициент магнитной проводимости пазового рассеяния ротора при овальном пазе.

Коэффициент проводимости дифференциального рассеяния ротора.

λg2 = t2/(12 · δ ·kδ) = 0,0128/(12 · 0,001 · 1,31) = 0,81

Коэффициент проводимости лобового рассеяния ротора.


Коэффициент проводимости рассеяния обмотки ротора.

Индуктивное сопротивление обмотки ротора.

x2 = 7,9 · ƒ1 · l1 · λ2 · 10-6 = 7,9 · 50 · 0,151 · 4,96 · 10-6 = 0,000296Ом

Индуктивное приведенное сопротивление обмотки ротора.

То же в относительных единицах.

x'2* = x'2 · I1н/U1н = 0,17 · 91,44/220 = 0,07

6. Потери в стали. Механические и добавочные потери

Потери в стали (магнитные потери) и механические не зависят от нагрузки, поэтому они называются постоянными потерями и могут быть определены до расчета рабочих характеристик. Расчетная масса стали зубцов статора при трапецеидальных пазах.

Gz1 = 7,8 · Z1 · bz1 · hz1 · l1 · kc· 103 = 7,8 · 72 · 0,0067 · 0,041 · 0,151 · 0,97 · 103 = 22,6кг

Магнитные потери в зубцах статора для стали 2013. Pz1 = 4,4 ·B2z1 · Gz1 = 4,4 · 1,322 · 22,6 = 173,26Вт


Масса стали ярма статора. Ga1 = 7,8π(Da – hz1) · ha · l1 ·kc · 103 = 7,8 · 3,14(0,52 – 0,041) · 0,052 · 0,151 · 0,97 · 103 = 89,5кг

Магнитные потери в ярме статора. Pa1 = 4,4 · B2a · Ga1 = 4,4 · 0,992 · 89,5 = 385,96Вт

Суммарные магнитные потери в сердечнике статора, включающие добавочные потери встали.

Механические потери.

Вт

Дополнительные потери при номинальной нагрузке определяются по эмпирической формуле.

Pдоп.н = 0,004 · P' = 0,04 · 58539,9 = 2341,6Вт

7. Расчет рабочих характеристик

Под рабочими характеристиками асинхронного двигателя понимаются зависимости:

P1, I1, I'2, cos φ', η, M, n = ƒ(P2),

Где Р1, Р2 – потребляемая и полезная мощности двигателя.

В основу рабочих характеристик положена система уравнений токов и напряжений, полученных из Г- образной схемы замещения асинхронного двигателя с вынесенными на выходные зажимы намагничивающим контуром. Рис. 5.

Рисунок 5 – Г- образная схема замещения и векторная диаграмма.

Коэффициент приведения параметров двигателя к Г- образной схеме замещения.

С1 = 1 + (x1/x12) = 1 + (0,28/13,2) = 1,021