Активное сопротивление обмотки статора, приведенное к Г- образной схеме замещения.
r'1 = C1 · r1 = 1,021 · 0.11 = 0,112Ом
Индуктивное сопротивление короткого замыкания, приведенное к Г- образной схеме замещения.
x'к = С1 · x1 + C21 · x'2 = 1,021 · 0,28 + 1,0212 · 0,17 = 0,463Ом
Активная составляющая тока холостого хода.
Ioa = (Pcm + 3 · I2µ · r1)/3 · U1н = (689 + 3 · 16,652 · 0,11)/3 · 220 = 1,18А
Расчет рабочих характеристик проводим для 5 значений скольжения в диапазоне:
S = 0,005 ÷ 1,25Sн,
где Sн – ориентировочно номинальное скольжение принимаем равным:
Sн = r'2* = 0,027
Все необходимые для расчета характеристик данные формулы сведены в таблицу 5.
Таблица 5
№п/п | Расчетная формула | Ед.изм. | Скольжение | ||||
0,25Sн | 0,50Sн | 0,75Sн | 1,0Sн | 1,25Sн | |||
1 | C21 · r'2/S | Ом | 9,88 | 4,94 | 3,29 | 2,47 | 1,98 |
2 | R = r'1 + C21 ·r'2/S | Ом | 26,48 | 13,33 | 8,89 | 6,67 | 5,34 |
3 | x = x'к | 0,463 | 0,463 | 0,463 | 0,463 | 0,463 | |
4 | Z = √R2 + x2 | Ом | 26,48 | 13,34 | 8,9 | 6,7 | 5,32 |
5 | I"2 = U1н/Z | А | 8,3 | 16,49 | 24,72 | 32,84 | 40,74 |
6 | cosφ'2 = R/Z | 1 | 0,99 | 0,99 | 0,99 | 0,98 | |
7 | sinφ'2 = x/Z | 0,02 | 0,034 | 0,05 | 0,069 | 0,087 | |
8 | I1a = Ioa + I"2 · cosφ'2 | А | 9,48 | 17,5 | 25,65 | 33,69 | 41,11 |
9 | I1p = Iop + I"2 · sinφ'2 | А | 16,82 | 17,21 | 17,89 | 18,91 | 20,19 |
10 | I'2 = C1 · I"2 | А | 8,47 | 16,83 | 25,24 | 33,53 | 41,6 |
11 | I1 = √I21a + I21p | А | 26,3 | 34,71 | 43,54 | 52,6 | 61,3 |
12 | P1 = 3 · I"22· r'2 · 10-3 | кВт | 9,27 | 11,55 | 16,87 | 22,23 | 27,13 |
13 | Pэ1 = 3 · I21 · r1· 10-3 | кВт | 0,23 | 0,4 | 0,63 | 0,93 | 1,26 |
14 | Pэ2 = 3 · I"22 · r'2 · 10-3 | кВт | 0,013 | 0,05 | 0,12 | 0,21 | 0,32 |
15 | Pдоб = Pдоб.н(I1/I1н)2 | кВт | 0,58 | 1,01 | 1,59 | 2,32 | 3,15 |
16 | ∑P = Pcm + Pмех + Pэ1 +Pэ2 + Pдоб | кВт | 8,092 | 8,729 | 9,609 | 10,729 | 11,999 |
17 | P2 = P1 - ∑P | кВт | 1,178 | 2,821 | 7,261 | 11,501 | 15,131 |
18 | η = 1 - ∑P/P1 | 0,18 | 0,24 | 0,43 | 0,52 | 0,56 | |
19 | cosφ = I1a/I1 | 0,36 | 0,5 | 0,59 | 0,64 | 0,67 | |
20 | Pэм = P1 – Pэ1– Pсm | кВт | 8,351 | 10,46 | 15,55 | 20,61 | 25,18 |
21 | ω1 = 2π · n1/60 | Рад/с | 314 | 314 | 314 | 314 | 314 |
22 | M = Pэм · 103/ω1 | Н.м | 26,6 | 33,3 | 49,5 | 65,6 | 80,2 |
23 | n = n1 ·(1 – S) | Об/мин | 2980 | 2960 | 2940 | 2919 | 2899 |
После расчета рабочих характеристик производим их построение
По номинальному току определяются номинальные параметры двигателя:
Р2н = 7,2кВт
Р1н = 17,5кВт
I'2н = 51,2А
сosφн = 0,61
ηн = 0,40
Мн = 50Н·м
nн = 2800об/мин
Sн = 0,018
Максимальный момент в относительных единицах.
Мmax* =Mmax / Mн =[(Sн /Sm) + (Sm/Sн)]/2 = [(0,018/0,20) + (0,20/0,018)]/2 =5,6
8.Расчет пускового тока и момента
При пуске в роторе АД имеют место два физических явления, оказывающих большое влияние на активное и индуктивное сопротивления, а следовательно, на пусковой ток и момент:
1) Эффект вытеснения тока в верхнюю часть паза, за счет которого расчетная высота паза и индуктивное сопротивление уменьшается, активное сопротивление увеличивается;
2) Эффект насыщения коронок зубцов потоками рассеяния, обусловленными большими пусковыми токами, за счет этого явления магнитные проводимости и индуктивные сопротивления уменьшаются.
Расчет активных и индуктивных сопротивлений обмотки ротора с учетом эффекта вытеснения тока.
Приведенная высота стержня для литой алюминиевой обмотки ротора при температуре 115˚С (класс изоляции F).
ξ = 63,61 · h21 = 63,61 · 0,040 = 2,54м
где h21 – высота стержня в пазу. Расчетный коэффициент увеличения активного сопротивления стержня φ в функции ξ. φ = 1,4. Глубина проникновения тока – расчетная высота стержня.
hr = h21 /(1 + φ) = 0,040/(1 + 1,4) = 0,017
Относительное увеличение активного сопротивления стержня.
kr = qc/qr = 96/81,33 = 1,18
где qr – площадь сечения стержня, ограниченная высотой hr.
qc – площадь сечения всего стержня.
Коэффициент общего увеличения активного сопротивления фазы ротора за счет вытеснения тока.
Приведенное активное сопротивление ротора с учетом вытеснения тока.
Расчетный коэффициент уменьшения индуктивного сопротивления стержня φ' в функции ξ. φ' = 0,6. Расчетный коэффициент уменьшения индуктивного сопротивления фазы ротора за счет вытеснения тока.
kx = λn2ξ /λ2 = 4,14/4,96 = 0,83
где λ2ξ– коэффициент магнитной проводимости рассеяния ротора с учетом вытеснения тока.
λ2ξ = λn2ξ + λл2 + λg2 = 1,23 + 2,1 + 0,81 = 4,14
λ2ξ = λn2 · φ' = 2,05 · 0,6 = 1,23
Приведенное индуктивное сопротивление ротора с учетом вытеснения тока.
x'2ξ =kx · x'2 = 0,83 · 0,17 = 0,14Ом
Расчет индуктивного сопротивления обмотки ротора с учетом влияния насыщения магнитопровода полями рассеяния.
Ток ротора, рассчитанный по Г-образной схеме замещения, без учета насыщения при S = 1.
То же с учетом насыщения. I'2нас ≈ I1нас = I1 · kнас = 458,33 · 1,3 = 595,83А, где kнас – коэффициент насыщения, предварительно выбирается в пределах: kнас = 1,25 ÷ 1,4. Средняя МДС обмотки, отнесенная к одному пазу статора.
Фиктивная индукция потока рассеяния в воздушном зазоре.
Коэффициент γδ, учитывающий отношение потока рассеяния при учете насыщения к потоку рассеяния ненасыщенной машины, по рис.8.
γδ = 0,8
Коэффициент магнитной индукции проводимости пазового рассеяния обмотки статора с учетом насыщения.
С1 = (t1-bш1) ·(1- γδ) = (0,0146 – 0,0045) · (1 – 0,80) = 0,00202
Коэффициент магнитной проводимости дифференциального рассеяния обмотки статора с учетом насыщения. λg1нас = λg1 · γδ = 1,13 · 0,8 = 0,9
Окончательное индуктивное сопротивление фазы обмотки статора с учетом насыщения, Ом
x1нас = x1 · ∑λ1нас/λ1 = 0,28 · 5,16/5,47 = 0,26 Ом
∑λ1нас = λn1нас + λg1нас + λл1 = 1,66 + 0,9 + 2,6 = 5,16
Аналогично для ротора: Коэффициент магнитной проводимости пазового рассеяния с учетом насыщения.
Δλn2нас = hш2/bш2 · С2/bш2 + С2 = 0,001/0,0015 · 0,00226/0,0015 + + 0,00226 = 0,4
С2 = (t2 – bш2) · (1- γδ) = (0,0128 – 0,0015) · (1- 0,80) = 0,00226
Коэффициент магнитной проводимости дифференциального рассеяния обмотки ротора с учетом насыщения.
λg2нас = λg2 · γδ = 0,81 · 0,8 = 0,65
Окончательно приведенное индуктивное сопротивление фазы обмотки ротора с учетом влияния вытеснения тока и насыщения.
x'2ξнас = x'2 · ∑λ2gнас/λ2 = 0,17 · 3,58/4,96 = 0,12Ом
∑λ2gнас = λn2нас + λg2нас + λл2 = 0,83 + 0,65 + 2,1 = 3,58
Коэффициент С1 в Г- образной схеме замещения.
С1nнас = 1 + (x1нас/x12n) = 1 + (0,26/14,92) = 1,02
x12n ≈ x12 · kμ = 13,2 · 1,13 = 14,92
Ток в обмотке ротора с учетом насыщения при S = 1.
аnнас = r1 + C1nнас · r'2ξ = 0,11 + 1,02 · 0,072 = 0,18
bnнас =x1нас + C1nнас · x'2ξнас = 0,26 + 1,02 · 0,12 = 0,38
Ток в обмотке статора при S = 1.
Пусковой ток в относительных единицах.
I1n* = I1n/I1н = 526,59/91,44 = 5,76
Кратность пускового момента.
, Sn = 1Mn = Mn* · Mн = 2,15 · 50 = 107,5H.м
СПИСОК ЛИТЕРАТУРЫ
1.Костенко Г.Н., Пиотровский Л.М. Электрические машины.- Л.: 1972.
2.Брускин Д.Э., Зорохович А.Е., Хвостов В.С.- Электрические машины. М.: 1979. Ч I. Ч II.
3.Кацман М.М. Электрические машины.- М.: 1983.
4.Копылов И.П. Электрические машины. -Л.: 1972.
5.Проектирование электрических машин. /Под ред. И.П.Копылова М.: 1980.
6.Зимин В.И., Каплай М.Я., Палей А.М. Обмотки электрических машин.- М.: 1975
7.Чичетян В.И. Электрические машины. Сборник задач.- М. : Высшая школа 1988.