Смекни!
smekni.com

Электрические машины (стр. 3 из 3)

Активное сопротивление обмотки статора, приведенное к Г- образной схеме замещения.

r'1 = C1 · r1 = 1,021 · 0.11 = 0,112Ом


Индуктивное сопротивление короткого замыкания, приведенное к Г- образной схеме замещения.

x'к = С1 · x1 + C21 · x'2 = 1,021 · 0,28 + 1,0212 · 0,17 = 0,463Ом

Активная составляющая тока холостого хода.

Ioa = (Pcm + 3 · I2µ · r1)/3 · U1н = (689 + 3 · 16,652 · 0,11)/3 · 220 = 1,18А

Расчет рабочих характеристик проводим для 5 значений скольжения в диапазоне:

S = 0,005 ÷ 1,25Sн,

где Sн – ориентировочно номинальное скольжение принимаем равным:

Sн = r'2* = 0,027

Все необходимые для расчета характеристик данные формулы сведены в таблицу 5.

Таблица 5

№п/п Расчетная формула Ед.изм. Скольжение
0,25Sн 0,50Sн 0,75Sн 1,0Sн 1,25Sн
1 C21 · r'2/S Ом 9,88 4,94 3,29 2,47 1,98
2 R = r'1 + C21 ·r'2/S Ом 26,48 13,33 8,89 6,67 5,34
3 x = x'к 0,463 0,463 0,463 0,463 0,463
4 Z = √R2 + x2 Ом 26,48 13,34 8,9 6,7 5,32
5 I"2 = U1н/Z А 8,3 16,49 24,72 32,84 40,74
6 cosφ'2 = R/Z 1 0,99 0,99 0,99 0,98
7 sinφ'2 = x/Z 0,02 0,034 0,05 0,069 0,087
8 I1a = Ioa + I"2 · cosφ'2 А 9,48 17,5 25,65 33,69 41,11
9 I1p = Iop + I"2 · sinφ'2 А 16,82 17,21 17,89 18,91 20,19
10 I'2 = C1 · I"2 А 8,47 16,83 25,24 33,53 41,6
11 I1 = √I21a + I21p А 26,3 34,71 43,54 52,6 61,3
12 P1 = 3 · I"22· r'2 · 10-3 кВт 9,27 11,55 16,87 22,23 27,13
13 Pэ1 = 3 · I21 · r1· 10-3 кВт 0,23 0,4 0,63 0,93 1,26
14 Pэ2 = 3 · I"22 · r'2 · 10-3 кВт 0,013 0,05 0,12 0,21 0,32
15 Pдоб = Pдоб.н(I1/I1н)2 кВт 0,58 1,01 1,59 2,32 3,15
16 ∑P = Pcm + Pмех + Pэ1 +Pэ2 + Pдоб кВт 8,092 8,729 9,609 10,729 11,999
17 P2 = P1 - ∑P кВт 1,178 2,821 7,261 11,501 15,131
18 η = 1 - ∑P/P1 0,18 0,24 0,43 0,52 0,56
19 cosφ = I1a/I1 0,36 0,5 0,59 0,64 0,67
20 Pэм = P1 – Pэ1– Pсm кВт 8,351 10,46 15,55 20,61 25,18
21 ω1 = 2π · n1/60 Рад/с 314 314 314 314 314
22 M = Pэм · 103/ω1 Н.м 26,6 33,3 49,5 65,6 80,2
23 n = n1 ·(1 – S) Об/мин 2980 2960 2940 2919 2899

После расчета рабочих характеристик производим их построение

По номинальному току определяются номинальные параметры двигателя:

Р2н = 7,2кВт

Р1н = 17,5кВт

I'2н = 51,2А

сosφн = 0,61

ηн = 0,40

Мн = 50Н·м

nн = 2800об/мин

Sн = 0,018

Максимальный момент в относительных единицах.

Мmax* =Mmax / Mн =[(Sн /Sm) + (Sm/Sн)]/2 = [(0,018/0,20) + (0,20/0,018)]/2 =5,6


8.Расчет пускового тока и момента

При пуске в роторе АД имеют место два физических явления, оказывающих большое влияние на активное и индуктивное сопротивления, а следовательно, на пусковой ток и момент:

1) Эффект вытеснения тока в верхнюю часть паза, за счет которого расчетная высота паза и индуктивное сопротивление уменьшается, активное сопротивление увеличивается;

2) Эффект насыщения коронок зубцов потоками рассеяния, обусловленными большими пусковыми токами, за счет этого явления магнитные проводимости и индуктивные сопротивления уменьшаются.

Расчет активных и индуктивных сопротивлений обмотки ротора с учетом эффекта вытеснения тока.

Приведенная высота стержня для литой алюминиевой обмотки ротора при температуре 115˚С (класс изоляции F).

ξ = 63,61 · h21 = 63,61 · 0,040 = 2,54м

где h21 – высота стержня в пазу. Расчетный коэффициент увеличения активного сопротивления стержня φ в функции ξ. φ = 1,4. Глубина проникновения тока – расчетная высота стержня.

hr = h21 /(1 + φ) = 0,040/(1 + 1,4) = 0,017

Относительное увеличение активного сопротивления стержня.

kr = qc/qr = 96/81,33 = 1,18

где qr – площадь сечения стержня, ограниченная высотой hr.

qc – площадь сечения всего стержня.


Коэффициент общего увеличения активного сопротивления фазы ротора за счет вытеснения тока.

Приведенное активное сопротивление ротора с учетом вытеснения тока.

Расчетный коэффициент уменьшения индуктивного сопротивления стержня φ' в функции ξ. φ' = 0,6. Расчетный коэффициент уменьшения индуктивного сопротивления фазы ротора за счет вытеснения тока.

kx = λn2ξ /λ2 = 4,14/4,96 = 0,83

где λ2ξ– коэффициент магнитной проводимости рассеяния ротора с учетом вытеснения тока.

λ2ξ = λn2ξ + λл2 + λg2 = 1,23 + 2,1 + 0,81 = 4,14

λ2ξ = λn2 · φ' = 2,05 · 0,6 = 1,23


Приведенное индуктивное сопротивление ротора с учетом вытеснения тока.

x'2ξ =kx · x'2 = 0,83 · 0,17 = 0,14Ом

Расчет индуктивного сопротивления обмотки ротора с учетом влияния насыщения магнитопровода полями рассеяния.

Ток ротора, рассчитанный по Г-образной схеме замещения, без учета насыщения при S = 1.

То же с учетом насыщения. I'2нас ≈ I1нас = I1 · kнас = 458,33 · 1,3 = 595,83А, где kнас – коэффициент насыщения, предварительно выбирается в пределах: kнас = 1,25 ÷ 1,4. Средняя МДС обмотки, отнесенная к одному пазу статора.

Фиктивная индукция потока рассеяния в воздушном зазоре.


Коэффициент γδ, учитывающий отношение потока рассеяния при учете насыщения к потоку рассеяния ненасыщенной машины, по рис.8.

γδ = 0,8

Коэффициент магнитной индукции проводимости пазового рассеяния обмотки статора с учетом насыщения.

С1 = (t1-bш1) ·(1- γδ) = (0,0146 – 0,0045) · (1 – 0,80) = 0,00202

Коэффициент магнитной проводимости дифференциального рассеяния обмотки статора с учетом насыщения. λg1нас = λg1 · γδ = 1,13 · 0,8 = 0,9

Окончательное индуктивное сопротивление фазы обмотки статора с учетом насыщения, Ом

x1нас = x1 · ∑λ1нас/λ1 = 0,28 · 5,16/5,47 = 0,26 Ом

∑λ1нас = λn1нас + λg1нас + λл1 = 1,66 + 0,9 + 2,6 = 5,16

Аналогично для ротора: Коэффициент магнитной проводимости пазового рассеяния с учетом насыщения.

Δλn2нас = hш2/bш2 · С2/bш2 + С2 = 0,001/0,0015 · 0,00226/0,0015 + + 0,00226 = 0,4

С2 = (t2 – bш2) · (1- γδ) = (0,0128 – 0,0015) · (1- 0,80) = 0,00226

Коэффициент магнитной проводимости дифференциального рассеяния обмотки ротора с учетом насыщения.

λg2нас = λg2 · γδ = 0,81 · 0,8 = 0,65

Окончательно приведенное индуктивное сопротивление фазы обмотки ротора с учетом влияния вытеснения тока и насыщения.

x'2ξнас = x'2 · ∑λ2gнас/λ2 = 0,17 · 3,58/4,96 = 0,12Ом

∑λ2gнас = λn2нас + λg2нас + λл2 = 0,83 + 0,65 + 2,1 = 3,58

Коэффициент С1 в Г- образной схеме замещения.

С1nнас = 1 + (x1нас/x12n) = 1 + (0,26/14,92) = 1,02

x12n ≈ x12 · kμ = 13,2 · 1,13 = 14,92

Ток в обмотке ротора с учетом насыщения при S = 1.

аnнас = r1 + C1nнас · r'2ξ = 0,11 + 1,02 · 0,072 = 0,18

bnнас =x1нас + C1nнас · x'2ξнас = 0,26 + 1,02 · 0,12 = 0,38

Ток в обмотке статора при S = 1.


Пусковой ток в относительных единицах.

I1n* = I1n/I1н = 526,59/91,44 = 5,76

Кратность пускового момента.

, Sn = 1

Mn = Mn* · Mн = 2,15 · 50 = 107,5H.м


СПИСОК ЛИТЕРАТУРЫ

1.Костенко Г.Н., Пиотровский Л.М. Электрические машины.- Л.: 1972.

2.Брускин Д.Э., Зорохович А.Е., Хвостов В.С.- Электрические машины. М.: 1979. Ч I. Ч II.

3.Кацман М.М. Электрические машины.- М.: 1983.

4.Копылов И.П. Электрические машины. -Л.: 1972.

5.Проектирование электрических машин. /Под ред. И.П.Копылова М.: 1980.

6.Зимин В.И., Каплай М.Я., Палей А.М. Обмотки электрических машин.- М.: 1975

7.Чичетян В.И. Электрические машины. Сборник задач.- М. : Высшая школа 1988.