КУРСОВАЯ РАБОТА
Электрические машины
Содержание
Введение
1. Техническое задание на курсовую работу
2. Расчёт геометрических размеров сердечника статора, ротора и расчет постоянных
3. Расчёт обмоток статора и ротора
4. Расчёт магнитной цепи
5. Активные и индуктивные сопротивления обмоток статора и ротора
6. Потери в стали, механические и добавочные потери
7. Расчет рабочих характеристик
8. Расчет пускового тока и момента
Список литературы
Введение
Электрические машины в основном объёме любого производства занимают первое место. Они являются самыми массовыми приёмниками электрической энергии и одним из основных источников механической и электрической энергий. Поэтому очень важная роль отведена электрическим машинам в экономике и производстве.
Сделать электрические машины менее энергоёмкими, более дешёвыми с лучшими электрическими и механическими свойствами. Это задача, решаемая постоянно при проектировании машин новых серий. Проектирование электрических машин процесс творческий требующий знания ряда предметов общетехнического цикла, новинок производства в области создания новых конструкционных, изоляционных материалов, требований спроса рынка, условий применения в электроприводе. В настоящее время практикуется создание не индивидуальных машин, а серий электрических машин, на базе которых выполняются различные модификации.
Целью расчета является определение мощности и технических характеристик асинхронного двигателя, рассчитанного на базе вышедшего из строя асинхронного двигателя.
1. Техническое задание для курсовой работы
Спроектировать трёхфазный асинхронный двигатель с короткозамкнутым ротором серии 4А климатического исполнения “У3”. Напряжение обмотки статора U=220/380 В.
Исходные данные для электромагнитного расчета асинхронного двигателя являются:
1. Номинальное фазное напряжение – U1н= 220B.
2. Схема соединение концов обмотки статора –
3. Частота питающей сети – ƒ1= 50 Гц.
4. Синхронная частота вращения поля статора – n1= 3000об/мин.
5. Степень защиты.
6. Геометрические размеры сердечника.
6.1 Наружный диаметр сердечника статора – Da= 0,52м.
6.2 Внутренний диаметр сердечника статора – D = 0,335м.
6.3 Длина сердечника статора – l1=0,05 + 0,3D.
6.4 Воздушный зазор – δ = 0,001м.
6.5 Размеры пазов статора (рис. 1.1) – b11 = 0,0081м.
b12 = 0,011м.
h11 = 0,04м.
bш1 = 0,0045м.
hш1 = 0,001м.
6.6 Размеры пазов ротора (рис. 1.2) – b21 = 0,006м.
b22 = 0,0033м.
h21 = 0,04м.
bш2 = 0,0015м.
hш2 = 0,001м.
7. Число пазов статора – Z1 = 72.
8. Число пазов ротора – Z2 =82.
9. Скос пазов ротора – bск = 0м.
10. Ширина короткозамыкающего кольца – aкл = 0,037м.
11. Высота короткозамыкающего кольца –bкл = 0,042м.
12. Высота оси вращения – h = 280мм.
2. Расчет геометрических размеров сердечников статора, ротора, расчет постоянных
Рис. 1 – Размеры пазов статора.
Расчетная длина сердечника статора. lδ=l1 = 0,05 + 0,3D = 0,05 + 0,3 · 0,335 = 0,151м
Размеры пазов статора. (см. рис. 1)
– высота паза hn1 = h11 + hш1 = 0,04 + 0,001 = 0,041м
– высота зубца hz1 = hn1 = 0,041м
– высота коронки hк1 = (b11 + bш1)/ 3,5 = (0,0081– 0,0045)/ 3,5 = 0,001м
– размер паза h12 = h11 – hк1= 0,04 – 0,001 = 0,039м
Зубцовый шаг статора. t1 = πD/ Z1 = 3,14 · 0,335 / 72 = 0,0146м
Ширина зубца статора^
Средняя ширина зубца статора: bz1 = (b'z1 + b"z1)/2 = (0,0067 + 0,007)/2 = 0,0069м
Высота ярма статора. ha = [Da – (D + 2hn1)]/2 =[0,52 – (0,335 + 2 · 0 041)]/2 = 0,052м
Рис. 2 – Размеры пазов ротора.
Длина сердечника ротора: l2 = l1 + 0,005 = 0,151 + 0,005 = 0,156м
Наружный диаметр сердечника ротора: D2 = D – 2δ = 0,335 – 2 · 0,001 = 0,333м
Внутренний диаметр сердечника ротора: DJ = 0,3D = 0,3 · 0,335 = 0,1005м
Размеры пазов ротора. (см. рис. 2)
– высота паза ротора: hn2 = h21 + hш2 = 0,04 + 0,001 = 0,041м
– высота зубца ротора: hz2 = hn2 = 0,041м
– размер паза: h22 = h21 – (b21 + b22)/ 2 = 0,04 – (0,006 + 0,0033)/ 2 = 0,01535м
Зубцовый шаг ротора: t2 = πD2/ Z2 = 3,14 · 0,333/ 82 = 0,0128м
Ширина зубца ротора:
Средняя ширина зубца ротора: bz2 = (b'z2 + b"z2)/ 2 = 0,0064 + 0,008/ 2 = 0,0072м
Высота ярма ротора: hJ = (D2 – DJ – 2hn2)/ 2 = (0,333 – 0,0999 – 2 · 0,041)/ 2 = 0,0756м, где DJ = 0,3D2 = 0,3 · 0,333 = 0,0999м
Относительная величина скоса пазов: b'ск = bск/ t2 = 0/ 0,0128 = 0
Площадь поперечного сечения паза ротора, сечения стержня к.з. обмотки ротора.
[3,14(0,0062 + 0,00332)/8 ++ 0,01535(0,006 + 0,0033)/2] · 106 = 96мм2
Площадь поперечного сечения короткозамыкающего кольца обмотки ротора: qкл = aкл · bкл · 106 = 0,037 · 0,042 · 106 = 1554мм2
Синхронная угловая скорость вращения магнитного поля: Ω = π · n1/ 60 = 3,14 · 3000/ 60 = 157рад/c
Число пар полюсов машины: p = 2(60ƒ)/ n1 = 2(60 · 50)/ 3000 = 2
Полюсное деление: τ = πD/ 2p = 3,14 · 0,335/ 2 · 2 = 0,263м
Число пазов на полюс и фазу: q = Z1/ 2p · m1 = 72/ 2 · 2 · 3 = 6, где m1 = 3 – число фаз обмотки статора.
3. Расчет обмоток статора и ротора
Выбор типа обмотки статора:
Однослойные обмотки применяются в асинхронных машинах – малой мощности, двухслойные – в машинах средней и большой мощности – как более технологичные для таких мощностей и обеспечивающие оптимальное укорочение шага. Всвязи с этим в машинах с h > 132мм (где h – высота оси вращения) рекомендуется однослойная обмотка, при 280мм > 132мм – двухслойная.
Коэффициент укорочения шага: β = γ/τ , где γ – шаг обмотки
Для двухслойной обмотки β = 0,75 ÷ 0,83.
Отсюда шаг обмотки: γ = β · Z1/2p = 0,75 · 72/ 2 · 2 = 14
Обмоточный коэффициент. kоб = kγ1 · kp1 = 0,924 · 0,956 = 0,882, где kγ1 = sin(β90˚) – коэффициент укорочения, kγ1 = sin(β · 90˚) = sin(0,75 · 90˚) = 0,924, kp1 – коэффициент распределения, является функцией q – числа пазов на полюс и фазу и определяется по таблице 1, откуда kp1 = 0,956
Расчетная мощность асинхронного двигателя.
P' = 1,11D2 ·lδ · Ω · kоб1 · А · Вδ = 1,11 · 0,3352 · 0,151 · 157 · 0,882 ·
· 38000 · 0,6 = 58540Вт
где А – линейная нагрузка, Вδ – магнитная индукция, определяется по графикам зависимостей линейной нагрузки и магнитной индукции от Da(рис. 3).
Номинальный ток обмотки статора. I1н = Р'/ 3E1 = 58540/ 3 · 213,4 = 91,44А, где Е1 = kE· U1н = 0,97 · 220 = 213,4
Сечение проводников фазы обмотки статора. qф = I1н/ J1 = 91,44/ 4 = 22,86 мм2, где J – плотность тока (5,5 ÷ 6,0), А/мм2
Выбор диаметра и сечения элементарного проводника.
Диаметр голого элементарного проводника d должен удовлетворять двум условиям:
d = (0,5 ÷ 1,0) · h / 100 = 0,64 · 280/ 100 = 1,79мм
где h высота оси вращения, h = 280мм, а d < 1,8мм => 1,79 < 1,8мм
Руководствуясь этими условиями, выбираем диаметр голого провода d по приложению Б, округляя его до ближайшего стандартного значения. По той же таблице находим сечение элементарного проводника qэл и диаметр изолированного провода dиз.
qэл = 2,54мм2; dиз = 1,895мм.
Значение диаметра изолированного провода должно удовлетворять условию: dиз + 1,5
bш1, 1,895 + 1,5 4,5мм.Число параллельных элементарных проводников в фазе.
nф = qф/ qэл = 22,86/ 2,54 = 9
По таблице 2.2 выбираем число параллельных ветвей обмотки – а. а = 3
Число элементарных проводников в одном эффективном, т.е. число проводников в одной параллельной ветви обмотки. nэл = nф /а = 9/ 3 = 3, при этом должны выполняться условия: nэл < 4, а
nэл ; 3 < 4, 3 3Уточняем значение плотности потока: J1 = I1н/ qф = 91,44/ 22,86 = 4А/мм2, где qф = qэл · nэл · а = 2,54 · 3 · 3 = 22,86мм2
Расчет магнитного поля и индукции.
Основной магнитный поток и линейная нагрузка:
Ф = Вδ · D · lδ/ p = 0,6 · 0,335 · 0,151/ 2 = 0,015Вб
А = 6w1 · I1н/ πD = 6 · 72 · 91,44/ 3,14 · 0,335 = 38450А/м
Число витков в фазе (предварительное): w1 = E1/ (4,44 · kоб1 · ƒ1 · Ф) = 231,4/ 4,44 · 0,882 · 50 · 0,015 = 72
Число эффективных проводников в пазу: Un = 2w1 · a · m1/Z1 = 2 · 72 · 3 · 3/ 72 = 18.
Уточненное значение числа витков.
w1
Уточненное значение потока.
Ф
ВбУточненное значение магнитной индукции в воздушном зазоре.
Вδ = Ф · р/ D · lδ = 0,015 · 2/ 0,335 · 0,151 = 0,6 Тл
Магнитная индукция в зубцах статора и ротора.
где kc = 0,97 коэффициент заполнения пакета сталью.
Магнитная индукция в ярмах статора и ротора:
Значения магнитных индукций в зубцах и ярмах должны удовлетворять условиям:
Bz1, Bz2 < 1,9 Тл;Ba, BJ< 1,6Тл
1,32; 1,04 < 1,9Тл; 0,99; 0,66 < 1,6Тл
Расчет коэффициента заполнения паза статора.
Размеры b11, b12 , h12 .
b'11 = b11 · 103 = 0,0081 · 103 = 8,1мм
b'12 = b12 · 103 = 0,011 · 103 = 11мм
h'12 = h12 · 103 = 0,039 · 103 = 39мм
Свободная площадь паза статора – площадь, занимаемая проводниками – для однослойной обмотки.
S'nc = ½(b'11 + b'12) · h'12 – Lu · ∆u + ∆b = ½(8,1 + 11) · 39 – 116,2 · 0,4 +
+ 0,2 = 302,73мм2,
где Lu – длина пазовой изоляции по периметру паза.
Lu = 2h'12 + b'11 + b'12 = 2(39 + 8,1 + 11) = 116,2мм