Таблица 22.2. Зависимость металлического перенапряжения (В• 103) от природы грани монокристалла (при 10 Ам~2, / = 25° С)
Индекс грани | ||||
Металл | Раствор | |||
(100) | (ПО) | (Ш) | ||
РЬ | 0,5 М РЬ(СЮ4)2, | 3,0 | 3,0 | 4,4 |
0,5 М НС1О4 | ||||
Sn | 0,5 М SnCl2 | 2,5 | 4,0 | _____ |
0,5 М НС1 | ||||
Си | 0,5 М Си(С1О4)>, | 35 | 40 | 43 |
0,5 М НС1О4 | ||||
Ni | 10 М NiCl2, | 768 | 839 | 819 |
0,33 М Н3ВО3 | ||||
(рН 3,1) |
Из табл. 22.1 и 22.2 следует также, что значение металлического перенапряжения в большей степени определяется природой металла, чем кристаллографической ориентацией электродной поверхности. Независимо от того, на какой из граней происходит выделение металла, перенапряжение всегда выше для никеля, чем для меди, а для меди оно всегда больше, чем для олова или свинца.
На подчиненную роль кристаллизационных факторов в явлениях перенапряжения указывают также данные по кинетике катодного выделения растворимых в ртути металлов на соответствующих амальгамах. Результаты кинетического исследования реакций обмена металлическими ионами между разбавленными амальгамами и растворами нитратов указывают на уменьшение тока обмена в следующем ряду:
TI, Pb, Cd>Cu, Zn>Ni
Характер кривых потенциал — время, полученных Гейровским методом осциллографической полярографии, показывает, что степень обратимости реакции разряда и ионизации на ртутных (точнее амальгамных) электродах уменьшается в последовательности TI, Pd, Cd, Sn, Bi, Sb, Sb, Cu
Порядок расположения металлов по степени их необратимости, а следовательно, по величине металлического перенапряжения практически не зависит от того, осаждается ли металл на твердом одноименном катоде или на разбавленной амальгаме соответствующего металла. Выделение металлов группы железа и на ртутном катоде сопровождается значительно большей поляризацией, чем у всех других металлов, приведенных в табл. 22.1. Оно протекает здесь еще менее обратимо, чем на твердых катодах. Однако эти металлы почти не способны образовывать амальгамы, и их осаждение в случае применения ртутных катодов совершается на плохо связанных между собой мелких кристаллических островках.
Систематические исследования влияния состава раствора на кинетику электроосаждения металлов были начаты в 1917 г. Н. А. Из-гарышевым. Было установлено, что при катодном выделении металлов из растворов их простых солей существенное значение имеет природа аниона соли. Влияние природы аниона на перенапряжение и на характер образующихся осадков наблюдается для многих металлов, но наиболее сильно оно проявляется для металлов, выделение которых не сопровождается высокой поляризацией. Обычно перенапряжение уменьшается при переходе от одного аниона к другому в следующем порядке:
POJj-, №^, SO2-, C104->NH2S03~>Cl->Br->I-
Причем в том же направлении увеличивается тенденция к образованию более грубых, крупнокристаллических осадков. Влияние анионов вполне сравнимо с эффектами, связанными с кристаллографическими факторами. Так, например, замена перхлоратных растворов на сульфаминовые уменьшает перенапряжение при выделении свинца примерно в той же степени, как и переход от грани (111) к грани (ПО).
Присуствие в растворе, помимо ионов разряжающегося металла, «индифферентных» катионов увеличивает металлическое перенапряжение. Подобные эффекты наблюдались при выделении никеля, цинка, меди и других металлов. В водных растворах обычными «посторонними» катионами являются водородные ионы. Увеличение их концентрации приводит чаще всего к росту металлического перенапряжения. Значительное его повышение наблюдается в присутствии поверхностно-активных катионов типа тетразамещенного аммония.
Высокая чувствительность процесса электроосаждения металлов к чистоте растворов указывает на то, что присутствие не только электролитов, но и любых веществ, особенно обладающих поверхностно-активными свойствами, должно играть здесь существенную роль. Так, введение в ванну цинкования ничтожного количества желатины (порядка 0,005%) изменяет величину катодный поляризации и характер получающихся осадков (Н. А. Йзгарышев, П. С. Титов, 1917).
Введение в раствор небольших количеств молекулярных и ионных веществ — один из наиболее эффективных способов воздействия на ход процесса электроосаждения металлов. Многие, преимущественно органические, вещества способны увеличивать блеск осадков (блескообразователи), сглаживать их поверхность (выравниватели), и изменять другие свойства, например пористость, твердость, хрупкость, способность окклюдировать водород и т. д. (Кудрявцев, Матулис и др.).
Обнаруженная М. А. Лошкаревым адсорбционная поляризация проявляется в том, что при добавлении к раствору некоторых поверхностно-активных веществ (например, трибензиламина) изменяется скорость выделения металла на ртутном и на твердых катодах. Она становится, во-первых, меньше той, что наблюдалась до введения добавки, и, во-вторых, не зависящей в широкой области потенциалов от катодного потенциала. Однако после того как достигается определенный (обычно весьма отрицательный) потенциал, действие добавки прекращается. Скорость выделения начинает быстро расти, приближаясь к нормальному для этих условий значению, отвечающему предельному диффузионному току. Сопоставление результатов поляризационных измерений на ртутных катодах с электрокапиллярными кривыми и кривыми дифференциальной емкости (снятыми до и после введения добавки) показали, что потенциал, при котором прекращается действие добавки, совпадает с потенциалом ее десорбции (рис. 22.5). Действие добавки оказывается при этом специфическим. Одни и те же добавки или определенная их комбинация в разной степени тормозят разряд различных ионов на ртутном катоде. Явление адсорбционной поляризации используется для улучшения качества гальванических осадков при электролитическом получении сплавов.
Все эти данные относятся к тому случаю, когда металлы выделяются из растворов их простых солей. Если неорганические или органические добавки образуют комплексные соединения с выделяющимся металлом, то ход катодного процесса существенно меняется. Прежде всего образование комплексов в растворе смещает равновесный потенциал металла в отрицательную сторону за счет уменьшения концентрации его свободных ионов. Добавление вещества М. А (анионы которого способны давать комплексные соединения МАХ с ионами выделяемого металла Мг+) вызывает в растворе реакцию комплексообразования:
Мг+ +х А- = МА£"* , (22 10)
где (г—х)—заряд образующихся ионов. Реакции (22.10) отвечает константа комплексообразования
Обратная ей величина называется константой нестойкости комплекса
Константа нестойкости характеризует способность комплекса с диссоциации с регенерацией исходных ионов Mz+ и, таким образом, определяет их равновесную концентрацию.
В результате реакции комплексообразования определенная доля (юнов Мг+ (тем большая, чем ниже константа нестойкости) будет присутствовать в растворе в виде сложных ионов MA*""* и, следовательно, концентрация свободных ионов металла должна уменьшиться. Это уменьшение и, соответственно, сдвиг эбратимого потенциала электрода в отрицательную сторону будут тем значительнее, чем меньше констан-га нестойкости и чем выше концентрация добавки. Подбирая соответствующие комплексообразо-вателн и их концентрации, можно изменить равновесные потенциалы присутствующих в растворе попов различных металлов таким образом, чтобы обеспечить или их совместное осаждение в виде сплава, или наиболее полное разделение.
Появление комплексов в растворе сказывается не только на равновесных потенциалах металлов, но и на величине перенапряжения и на характере катодных осадков. При переходе от простых электролитов к комплексным обычно наблюдается повышение перенапряжения и уменьшение зернистости осадков; одновременно подавляется тенденция к образованию и росту дендритов. Так, серебро, которое при электролизе раствора его нитрата выделяется на катоде почти без поляризации и дает грубые, шероховатые осадки, из комплексных цианистых электролитов может быть получено в виде гладких тонкокристаллических отложений.
Электродная поляризация, наблюдаемая при выделении металлов, может быть связана либо с фазовыми превращениями (см. гл. 16) и представлять собой один из видов фазового перенапряжения (за-медленость образования трехмерных и двухмерных зародышей, поверхностная диффузия адатомов или аднонов), либо с замедленностью собственно электрохимической стадии (см. гл. 17) и совпадать с электрохимическим перенапряжением. При осаждении металлов существенную роль играют затруднения на стадии транспортировки, а также на стадии химического превращения (см. гл. 15), предшествующего электрохимическому акту. При рассмотрении процессов катодного выделения металлов (особенно из комплексных электролитов) необходимо поэтому всегда учитывать концентрационную поляризацию, т. е. диффузионное перенапряжение и химическое или реакционное перенапряжение. Наконец, в условиях катодного выделения металлов энергетическое состояние иона в образующемся осадке может отличаться от его состояния в нормальной кристаллической решетке данного металла и, как правило, отвечать более высокому уровню энергии. Переход из такого мета-стабильного состояния к обычному также может обусловливать появление особого вида фазового (кристаллизационного) перенапряжения.