Смекни!
smekni.com

Электроосаждение металлов (стр. 8 из 9)

В связи с влиянием водорода на кинетику электроосаждения металлов важно выяснить причины, которые приводят к различному содержанию водорода в разных металлах и, следовательно, изменяют величину его тормозящего действия при переходе от одного металла к другому. Оказалось, что в общем случае нет прямой зависимости между долей общего тока, расходуемой на выделение водорода, и его содержанием в металле. Так, например, при электроосаждении цинка выход по току водорода обычно больше, чем в случае железа; тем не менее содержание водорода в нем всегда меньше и перенапряжение при его выделении ниже. Расположение металлов в порядке увеличения перенапряжения при их выделении примерно соответствует их расположению по степени уменьшения водородного перенапряжения. Однако большее значение должна иметь не величина перенапряжения водорода, а механизм его выделения на данном металле (Л. И. Антропов, 1952). Включение водорода в осадок металла тем вероятнее, чем медленнее протекает удаление адсорбированных водородных атомов с поверхности металла. Наибольшие количества водорода обнаруживаются поэтому в катодных осадках металлов группы железа, где стадия рекомбинации водородных атомов протекает медленно.

Присутствие адсорбированного или окклюдированного водорода все-таки не может считаться главным фактором, определяющим специфику катодного выделения металлов.

Причину различия в значениях металлического перенапряжения и в характере катодных осадков можно было бы искать в неодинаковой склонности металлов к пассивированию и в их разной адсорбционной способности. Появлениен на поверхности растущего осадка посторонних.веществ затрудняет и разряд металлических ионов, и их внедрение в кристаллическую решетку. Этот тормозящий эффект должен быть тем заметнее, чем легче пассивируется данный металл. Пассивирующими агентами могут быть растворенный кислород, примеси органических соединений и каталитических ядов, некоторые посторонние ионы, не участвующие непосредственно в электродной реакции, и другие вещества. Особое положение металлов группы железа, в частности их высокое металлическое перенапряжение, объясняется с этой точки зрения тем, что они в большей мере, чем другие металлы, склонны к пассивированию. Однако и этот фактор не является, по-видимому, решающим и не обусловливает порядка расположения металлов по величине их перенапряжения. Даже после самой тщательной очистки растворов от примесей и удаления из них кислорода разница в значениях металлического перенапряжения между инертными и нормальными металлами остается большой. Точно так же свинец, который пассивируется несравненно легче, чем цинк, выделяется при более низком перенапряжении.


2.5.3. Заряд поверхности металла в условиях его катодного осаждения

Протекание адсорбционных явлений на границе металл — электролит, а следовательно, В степень их влияния на процессы, идущие на этой границе, во многом зависит от потенциала, или точнее, от заряда металла.

Ранее считалось, как само собой разумеющееся, что поверхность катода всегда отрицательна, причем тем более отрицательна, чем менее электроположителен электродный металл. Эта точка зрения, сохранившая известное распространение и в настоящее время, ошибочна. Заряд поверхности металла не определяется ни той ролью, какую металл играет в электрохимическом процессе (т. е. является ли он катодом или анодом), ни его электродным потенциалом в данных условиях. Заряд поверхности электрода можно оценить, если воспользоваться предложенной Л. И. Антроповым приведенной, или ср-шкалой потенциалов. Потенциал электрода в ф-шкале представляет собой разность между его потенциалом в данных конкретных условиях (например, в процессе электроосаждения металла) и соответствующей нулевой точкой. Потенциал электрода в приведенной шкале служит мерой заряда поверхности и позволяет предвидеть, адсорбция каких именно ионов будет наиболее вероятной в данных условиях. Это положение можно проиллюстрировать на примере катодного выделения никеля, цинка, кадмия и свинца из растворов их простых солей. Все эти металлы выделяются при отрицательных потенциалах (по водородной шкале), которые в обычных режимах электролиза имеют следующие значения: —0,80 В (№), —0,80 В (Zn), —0,45 В (Cd) и —0,15 В (РЬ). Их потенциалы в приведенной шкале, т. е. заряды, можно оценить, воспользовавшись данными о нулевых точках этих металлов (см. табл. 11.6):

?М, ==-0,83 —( —0,2) = -0,6В;

<PZn = - 0,80 — (- 0,5) = - 0,3 В;

?Cd = - 0,45- ( - 0,7) = + 0,25 В;

9РЬ = — 0,15 — (-0,7) ==+0,55 В.

Из этих значений ф-потенциалов следует, что в условиях электроосаждения никель имеет наиболее отрицательный заряд, за ним следует цинк, который также заряжен отрицательно, в то время как кадмий и свинец заряжены положительно. В ходе электровыделения на поверхности осадков никеля и цинка должны , адсорбироваться преимущественно катионы, а на поверхности осадков кадмия и свинца — главным образом анионы. Эти выводы, строго говоря, справедливы течением концентрации водородных ионов и при введении поверхностно-активных катионов, резкое увеличение перенапряжения водорода при переходе от положительно заряженной поверхности металла к отрицательно заряженной и т. д. Все нормальные металлы (Hg, Ag, Tl, Pb, Cd), при выделении которых перенапряжение ничтожно мало, заряжены положительно по отношению к растворам их простых солей (ф>0), а все металлы, выделение которых сопровождается высоким перенапряжением (металлы группы железа), — отрицательно (ф<0). Поэтому в явлениях электроосаждения металлов необходимо учитывать заряд поверхности электрода, хотя он и не определяет всех особенностей этих процессов. Так, например, неясным остается факт существования большой разницы в значениях перенапряжения при выделении цинка и никеля — металлов, обладающих в условиях равновесия приблизительно одинаковым отрицательным зарядом поверхности. Точно так же выделение меди, судя по ее ф-потенциалу, должно бы происходить с такой же легкостью, как и выделение кадмия или свинца, тогда как данные опыта противоречат этому.


2.5.4. Другие возможные причины появления металлического перенапряжения

Невозможность объяснить все кинетические особенности электрохимического выделения металлов с какой-либо одной общей точки зрения заставляет искать новые пути истолкования этих процессов и прибегать к предположениям частного характера. Так, например, существует мнение, что перенапряжение при выделении металлов связано с числом электронов, участвующих в элементарном акте разряда (Гейровский). При этом предполагают, что одно электронные реакции протекают практически без торможения.

В тех случаях, когда только один электрон участвует в акте разряда (или когда процесс можно разбить на ряд последовательных одноэлектронных стадий), перенапряжение должно быть низким. Если в разряде ионов металла участвуют одновременно два электрона, то следует ожидать появления высокого металлического перенапряжения. Согласно этим представлениям низкое перенапряжение, наблюдаемое при выделении таллия и серебра, связано с тем, что реакция восстановления требует участия одного электрона:

Ag+ + е- = [Ag]

Невысокое металлическое перенапряжение, свойственное меди и цинку, объясняют возможностью протекания разряда в две одно электродные стадии:

CU2+ +е~ = Си+ Cu+ + e~ = [Си]

е~ = Zn+

Zn+ ■+• е~ = [Zn]

Для металлов группы железа разряд совершается при одновременном присоединении двух электронов чем обусловливаются малая скорость этого процесса (вероятность одновременного присоединения двух электронов низка) и высокое перенапряжение.

2е~ = [Fe]

Однако уже давно было замечено, что скорость электроосаждения, а также электрорастворения металлов группы железа зависит от рН раствора и присутствия в нем примесей. Р. X. Бурштейн, Б. Н. Кабанов и А. Н. Фрумкин (1947) высказали предположение о непосредственном участии ионов ОН~ в кинетике этих процессов. По их мнению, ионы ОН~ играют роль своеобразных катализаторов. Механизм реакций катодного осаждения и анодного растворения железа, кобальта и никеля с образованием промежуточных частиц типа FeOH, FeOH+ или Fe-FeOH+ рассматривался затем Хейслером, Бокрисом, Фишером и Лоренцом и многими другими авторами. Было предложено несколько схем, объясняющих такие экспериментальные данные, как характер зависимости скорости реакции от рН, небольшой наклон тафслсвской прямой в чистых растворах серной кислоты, его повышение при переходе к растворам соляной кислоты и при введении добавок поверхностно-активных веществ и т. д. В качестве иллюстрации можно привести схему Бокриса

Fe2+ + ОН- = FeOH+ FeOH+ + e~ = FeOH

— [Fe] + O

СМ ворд док – глюк


Заключение

Лаборатория электрокатализа и коррозии (зав. лабораторией — д.х.н., профессор О.А.Петрий)

В лаборатории изучается широкий круг электрокаталитических и коррозионных явлений на металлах, сплавах, оксидах и различных композиционных материалах в водных и апротонных средах. В основе подхода к этим исследованиям лежит экспериментальное и теоретическое рассмотрение процессов на микроскопическом уровне, поэтому наряду с электрохимическими методами используются и совершенствуются применительно к новым объектам и задачам методы сканирующей туннельной микроскопии и спектроскопии, эллипсометрии, а также комплекс физико-химических методов структурного анализа материалов. Разрабатываются нетрадиционные способы получения наноструктур и многофазных композиций, основанные на процессах анодной и катодной электрокристаллизации. Развиваются новые подходы к молекулярному дизайну поверхностей электродов-катализаторов.