Выбираем шины: 15х3 мм., IДОП = 165 А.
На цеховых подстанциях обычно устанавливают силовые трансформаторы мощностью до 1000 кВ*А. На них устанавливают максимально-токовую защиту, защиту от однофазных замыканий на землю на стороне низшего напряжения; газовую защиту – для трансформаторов внутрицеховых подстанций мощностью от 400 кВ*А и выше.
Указанные защиты применяют в зависимости от типа аппаратов, установленных на стороне высшего напряжения: высоковольтный выключатель, выключатель нагрузки или предохранители. Применение последних значительно удешевляет установку и упрощает защиту.
Защиту предохранителями и выключателями нагрузки выполняют для трансформаторов мощностью до 1000 кВ*А напряжением до 10 кВ с предохранителями ПК на 100 А и мощностью не более 2500 кВ*А напряжением 35 кВ с предохранителями ПК-35Н на 40 А; отключаемая мощность короткого замыкания не должна превышать 200 МВ*А.
Высоковольтные предохранители типа ПК при установке на них соответствующих плавких вставок обеспечивают защиту трансформатора от внутренних повреждений и междуфазных коротких замыканиях на выводах.
Защиту от однофазных замыканий на землю осуществляют автоматическим выключателем с максимальным расцепителем, установленным на стороне низшего напряжения, или трансформатором тока ТТ на нулевом проводе при прямом присоединении трансформатора с глухозаземленной нейтралью к шинопроводу.
2.10 Выбор защитного заземления
Заземление какой-либо части электроустановки – преднамеренное соединение её с заземляющим устройством с целью сохранения в ней низкого потенциала и обеспечение нормальной работы системы или её элементов в выбранном режиме. Различают три вида заземлений: рабочее, защитное и заземление молниезащиты.
Рабочее заземление сети – соединение с землей некоторых точек сети со следующей целью: снижение уровня изоляции элементов электроустановки, эффективная защита сети разрядниками от атмосферных перенапряжений, снижение коммутационных перенапряжений, упрощение релейной защиты от однофазных коротких замыканий, возможность удержания поврежденной линии в работе.
Те или другие перечисленные свойства сети приобретают в зависимости от способа её заземления, в соответствии, с чем различают:
1. Незаземленные сети, в которых с землей соединяются только нейтрали первичных обмотках измерительных трансформаторов напряжения, сопротивление которых очень велико;
2. Заземление через дугогасящие реакторы, или компенсированные сети;
3. Эффективно заземленные сети.
Изоляция оборудования в эффективно заземленных сетях выбирается по фазному напряжению.
Рабочее заземление осуществляется непосредственно или через специальные аппараты: пробивные предохранители, разрядники и резисторы.
Электроустановки переменного тока напряжением до 1000 В. допускаются к применению как с глухозаземленной, так и с изолированной нейтралью, а – тока – с глухозаземленной или изолированной средней точкой. В четырехпроводных сетях трехфазного тока и трехпроводных сетях – тока обязательное глухое заземление нейтрали или средней точки.
В электрических установках напряжением 110 кВ и выше нейтрали заземляются наглухо, а нейтрали напряжением – 3, 6, 10, 20, 35 кВ не заземляются или заземляются через конденсаторные установки.
При заземлении электрических установок особое внимание необходимо обращать на заземление металлических корпусов передвижных и переносных электроприемников, передвижных установок и механизмов.
В электрических установках напряжением до 1000 В, с изолированной от земли нейтралью, используемой для заземления электрического оборудования, сопротивление заземляющего устройства не должно быть более 4 Ома.
В электрических установках напряжением до 1000 В. с глухозаземленной нейтралью сопротивление заземляющего устройства, к которым присоединяются нейтрали генераторов или трансформаторов, должно быть не более 2, 4, 8 Ом.
Отклонение электрических установок при однофазных замыканиях на землю может осуществляться при помощи защитного отключения, которое выполняется в дополнение к заземлению или занулению.
Если невозможно выполнить заземление, или зануление, и обеспечить защитное отключение электрической установки, то допускается обслуживание электрического оборудования с изолирующих площадок. При этом должна быть исключена возможность одновременного прикосновения к незаземленным частям электрического оборудования и частям зданий или оборудованию имеющем соединение с землей.
В данном курсовом проекте внешний контур защитного заземления выполнен электродами, в количестве 9 штук. Электроды соединены между собой в общий контур полосовой стальной шиной по периметру. Соединение внутреннего контура с внешним контуром выполняется полосовой сталью на сварке, выход полосы через стену в асбестоцементной трубе. Заземление электрических приемников выполняется гибким проводником на сварке.
Выбираем прутковые электроды.
Рассчитываем удельное сопротивление грунта.
(2. 47)Выбираем грунт – глина,
Выбираем коэффициент повышенного удельного сопротивления
Определяем сопротивление одиночного заземлителя:
(2. 48)Определяем сопротивление заземляющего устройства при условии, что оно является общим для напряжения 6 и 0,4 кВ.
(2. 49)Берем
по ПУЭ для напряжения 0,38 кВ.Определяем количество электродов:
(2. 50)2.11 Учет и контроль электроэнергии
Расчетным учетом электроэнергии называется учет выработанной, а также отпущенной потребителям электроэнергии для денежного расчета за неё. Счетчики, устанавливаемые для расчетного учета, называются расчетными счетчиками (класса 2), с классом точности измерительных трансформаторов - 0,5.
Техническим (контрольным) учетом электроэнергии называется учет для контроля расхода электроэнергии электростанций, подстанций, предприятий, зданий, квартир и т.п. Счетчики, устанавливаемые для технического учета, называются контрольными счетчиками (класса 2,5) с классом точности измерительных трансформаторов – 1.
При определении активной энергии необходимо учитывать энергию: выработанную генераторами электростанций; потребленную на собственные нужды электростанций и подстанций; выданную электростанциями в распределительные сети; переданную в другие энергосистемы или полученную от них; отпущенную потребителям и подлежащую оплате.
Кроме того, необходимо контролировать соблюдение потребителями заданных им режимов потребления и баланса электроэнергии, установления удельных норм расхода электроэнергии и проведения хозрасчета.
Расчетные счетчики активной электроэнергии на подстанции энергосистемы должны устанавливаться:
1) для каждой отходящей линии электропередачи, принадлежащей потребителям;
2) для межсистемных линий электропередачи – по два счетчика со стопорами, учитывающих полученную и отпущенную электроэнергии;
3) на трансформаторах собственных нужд;
4) для линий хозяйственных нужд или посторонних потребителей (поселок и т.п.), присоединенных к шинам собственных нужд.
Расчетные счетчики активной электроэнергии на подстанциях потребителей должны устанавливаться:
1) на вводе (приемном конце) линии электропередачи в подстанцию:
2) на стороне высокого напряжения трансформаторов при наличии электрической связи с другой подстанцией энергосистемы;
3) на границе раздела основного потребителя и субабонента.
Контрольные счетчики технического учета. Эти счетчики включают в сеть низшего напряжения (до 1000 В), что имеет ряд преимуществ:
установка счетчика обходится дешевле (чем на стороне высшего напряжения);
появляется возможность определить потери в трансформаторах и в сети высшего напряжения;
монтаж и эксплуатация счетчиков значительно проще.
Требования, предъявляемые к контрольным счетчикам в отношении класса точности, значительно ниже, чем требования, предъявляемые к расчетным счетчикам, поскольку по контрольным счетчикам не производят денежных расчетов. Поэтому контрольные счетчики могут подключаться к измерительным трансформаторам тока класса точности 1.
Допускается установка контрольных счетчиков технического учета на вводе предприятия, если расчетный учет с ним ведется по счетчикам, установленным на подстанциях энергосистем.
Для измерения активной энергии в трехфазных сетях при неравномерной нагрузке применяют двух- и трех системные счетчики. В трехфазных сетях с нулевым проводом сумма токов отдельны фаз не равна нулю и поэтому двухсистемные счетчики непригодны.
В четырехпроводных сетях при неравномерной нагрузке применяют трехсистемные счетчики или двухсистемные счетчики с тремя токовыми катушками.
Рисунок 5. Схема включения трехфазного счетчика типов СА4, СА4У для измерения активной электроэнергии в четырехпроводной сети напряжением до 1000 В.