Смекни!
smekni.com

Элементы конструирования печатных плат (стр. 3 из 8)

Увеличение толщины печатной платы сверх отношения толщины к диаметру 4:1 приводит к значительным осложнениям в обеспечении надежности металлизированных отверстий, так как они менее устойчивы к воздействию термомеханических напряжений.

3.3 Монтажные контактные площадки. Финишные покрытия

Разнообразие финишных покрытий настолько велико, что приходится говорить о том, что ни одно из них не удовлетворяет всему комплексу требований к пайке и длительному сохранению способности к пайке.

В технологии печатных плат финишные покрытия формируются одним из двух методов: из металлорезиста, используемого при травлении рисунка, и специальным осаждением покрытия под пайку на монтажные поверхности. Гальванические покрытия металлорезистами при травлении окисляются настолько, что приходится применять для них специальные процессы дезоксидации. Для легкоплавких металлорезистов можно использовать оплавление, и тем самым, значительно улучшать способность к пайке. Поскольку медь проводников образует с оловом интерметаллиды, из-за которых исчезает способность к пайке, под металлорезистом формируют барьерный подслой, например, никеля. Тогда способность к пайке сохраняется достаточно длительный срок, даже без оплавления олова-свинца. Поскольку, кроме способности к пайке, приходится считаться и с устойчивостью металлорезистов к травящим растворам. Выбор финишных покрытий имеет вариантность.

Вариант 1. Если предпочтение отдано схеме процесса, по которой для защиты при травлении рисунка используется металлорезист, в выборку попадают сплав олово-свинец, олово, никель, палладий и серебро. Из них, по паяемости без оплавления, лучшими могут быть олово, палладий и серебро. По устойчивости к электрохимическим отказам выгодно отличаются палладий и олово. По стоимости – предпочтительней олово.

Травление меди по оловянному металлорезисту осуществляется в аммиачном комплексе хлорной меди – универсальном травящем растворе, пригодном, в том числе, для травления меди по фоторезисту.

Таким образом, для первого варианта в качестве металлорезиста и покрытия под пайку целесообразно использовать олово и, соответственно, в качестве травителя – аммиачный комплекс хлорной меди.

Вариант 2. Если требуется изготавливать платы не выше 4 класса точности по тентинг-процессу, в качестве финишного покрытия, как правило, используют горячее облуживание по паяльной маске. Но горячее облуживание неизбежно оставляет на поверхности монтажных площадок наплывы с неопределенной высотой от 0 до 0,3 мм. При установке чипов и компонентов в корпусе, типа BGA, эта разновысотность не позволяет реализовать установку таких компонентов. Горячее облуживание плат становится неприемлемой.

Альтернативой облуживанию являются иммерсионные покрытия оловом и золотом. Поскольку эти покрытия принципиально тонкие, они требуют использования барьерных подстоев, что несколько удорожает процесс. Тем не менее, он остается и надежней, и дешевле процесса горячего облуживания.

В последнее время начинают использовать покрытия органическими ингибиторами, сохраняющими способность плат к пайке в течение длительного времени.

3.4 Контактные покрытия

Разъемные электрические соединения, образованные концевыми печатными контактами с розетками соединителей, в соответствии со своим назначением должны иметь высокую поверхностную

проводимость в условиях воздействия агрессивных компонентов промышленной атмосферы и среды обитания людей, отличающейся относительно высоким содержанием аммиака и его соединений, сернистых соединений, жировой аэрозоли и других, обладать устойчивостью к многократным сочленениям-расчленениям, паяемостью. Основные проблемы в выборе контактных покрытий состоят в обеспечении надежности контактов, которые должны одинаково хорошо работать в условиях как малых, так и больших токовых нагрузок.

Развитие электронной техники привело к снижению коммутируемых контактами нагрузок; а миниатюризация – к уменьшению контактных давлений, к переходу от притирающихся разъемных соединений к нажимным, коммутирующим нагрузки от «сухих» до долей ампера, при напряжениях от микровольт до нескольких вольт, при малых усилиях нажатия, приходящихся на один контакт. Характерными особенностями режима работы концевых печатных контактов являются длительное замкнутое состояние с кратковременными перерывами и единичные включения с длительными перерывами.

Электрическое сопротивление контакта при очень малых нагрузках значительно больше, чем при больших, и более критично к изменению тока в контактной цепи. Кроме того, при малых нагрузках всегда имеется вероятность сбоев, т.е. самовосстанавливающихся отказов, возникающих по случайным причинам.

Цепи с малыми токами, как правило, являются высокоомными и не критичны к величине электрического сопротивления контакта, однако устойчивые тенденции к увеличению этого сопротивления могут служить признаком наступающего отказа.

Нагрузки в цепи контактов определяют механизм контактирования. Пассивные нагрузки характеризуются такими уровнями тока и напряжения, что не могут создать условия пробоя поверхностных пленок. Проводимость контакта, в таком случае, может осуществляться только через контактные пятна, созданные силой, прижимающей контакты друг к другу. Механизм проводимости контакта при этом металлический или туннельный.

Активные нагрузки характеризуются такими уровнями токов и напряжений, которые создают проводящие участки контакта. При этих нагрузках основным механизмом образования контакта является электрический пробой – фриттинг, благодаря которому пробиваются загрязняюшие слои и расширяются уже имеющиеся проводящие.

Границей между пассивными и активными нагрузками является напряжение фриттинга, минимальное значение которого равно долям вольта при напряженности поля более 107 В/м.

Основное влияние на надежность слаботочных контактов оказывает состояние их поверхности. Поэтому, при выборе покрытия контактов, следует принимать во внимание способность к образованию окисных, сульфидных и сульфатных пленок, обусловленных наличием в атмосфере городов и помещений с людьми относительно больших концентраций окислов серы, сероводорода, аммиачных соединений и влаги. Свойства материалов для контактных покрытий приведены в табл. 2.4.

Благодаря особым свойствам в качестве контактных материалов чаще всего используются золото, палладий, серебро, олово и всевозможные сплавы этих металлов.

Золочение контактов – самый надежный способ обеспечения надежности разъемного соединения. Износостойкость золотого покрытия прямо зависит от толщины слоя золота и твердости материалов, из которых состоят контакты ответной части соединителя. Наибольший срок службы сопряженных контактов разъема обычно достигается выбором двух материалов, имеющих различную твердость. Так как контакты разъема покрываются твердым золотом, концевые печатные контакты должны быть покрыты относительно мягким золотом. Другим аргументом в пользу мягкого золота является то, что оно более стойко к атмосферным воздействиям, видимо, потому, что оно не загрязнено никакими присадочными металлами. Опасения относительно повышенного мягкого контактного покрытия не оправданы, поскольку плата сочленяется внешними соединителями аппаратуры и извлекается из него всего лишь несколько раз за весь период эксплуатации. Для покрытия контактов разъема целесообразно использовать твердое золото улучшения износостойкости их поверхности.

Твердое золото представляет собой сплав с такими металлами, как кобальт, никель, индий. Твердость по Виккерсу для твердого золота лежит в пределах 1400…2400 Н/мм2, в то время, как твердость мягкого золота составляет 600…800 Н/мм2.

Палладиевые покрытия имеют меньшую пористость и большую износостойкость, по сравнению с золотыми, что позволяет снизить толщину покрытия. Недостатками их являются способность катализировать деструкцию органических соединений и малая стойкость в средах, загрязненных газообразными выделениями полимерных материалов. Продукты полимеризации представляют собой тонкие, прозрачные пленки на контактной поверхности.

Серебряные покрытия со временем тускнеют, а затем чернеют из-за образования пленок – продуктов окисления и сульфидизации. При длительном хранении контактные поверхности из серебра пассивируются. Эти пленки при контактировании могут быть разрушены только в цепях с большими напряжениями и токами. Поэтому для переключения малых токов использование серебра нецелесообразно.

Олово относится к дешевым материалам, но из-за низкой износостойкости применяется в аппаратуре, где число сочленений-расчленений не превышает 50. Следует учитывать способность олова к образованию нитевидных кристаллов, способных вызвать короткое замыкание.

В высоконадежной микроэлектронной аппаратуре в качестве контактных покрытий начинают применять гальванический сплав палладий-никель, имеющий заметные преимущества перед покрытиями чистыми золотом и палладием. В табл. 2.5 и 2.6 приведены характеристики покрытий из указанных материалов.

Таблица 2.5. Контактное сопротивление

Электрическое сопротивление контакта, мОм.
Вид покрытия После 50 ч пребывания Свежеосажденное на воздухе при покрытие температуре4, 125° С
Палладий 1,6 ±0,5 2,3 ±0,5
Палладий-никель 1,6 ±0,5 2,2 ±0,4
Палладий-никель+ + ЗОЛОТО 1,4 ±0,5 1,8 ±0,5
Таблица 2.6. Пористость контактных покрытий.
Видпокрытия Пористость покрытия толщиной 1 мкм на 1 см2
Чистый палладий (с микро-трещинами) 90+30
Твердое золото 23±17
Чистый палладий 10±6
Палладий-никель 2±2
Палладий-никель+ +золото 0,6

Надежность концевых печатных контактов ограничивается коррозией основы, через поры контактных покрытий, и диффузией основного металла, через тонкий слой контактного покрытия. Если подслоем контактного покрытия из золота или палладия служат медь или серебро, коррозия начинается в порах покрытия при воздействии сульфатов, сульфидов и оксидов; ее продукты расползаются по поверхности контактного покрытия и вызывают повышение контактного электрического сопротивления, т.е. ухудшение контакта вплоть до полного разрыва электрической цепи. Поэтому между медью и контактным покрытием наносят барьерный слой никеля, устойчивого к воздействию сероводорода. Нанесение подслоя никеля способствует выглаживанию поверхности, что тоже способствует снижению пористости контактного покрытия. Замечено, что при прочих равных условиях пористость твердого золочения приблизительно в два раза больше, чем мягкого.