Смекни!
smekni.com

Элементы конструирования печатных плат (стр. 5 из 8)

Такая же асимметрия в структуре слоев МПП может возникать в результате использования материалов из разных партий, отличающихся температурой стеклования, текучестью и содержанием связующего и т.д. Неравномерность усадки эпоксидной смолы, взятой из разных партий материалов, используемых в МПП, – наиболее вероятная причина коробления, когда все другие причины ликвидированы.

В ряде случаев, плату можно попытаться выпрямить, терморихтовкой, т.е. нагревом и охлаждением плат под металлической ретиной. Но, если ее коробление вызвано несимметричностью конструкции, плата все равно вернется к деформированному состоянию.

Значительные деформации ПП могут возникать в процессе пайки, если не использовать приспособления, предотвращающие их искривление. Термомеханические напряжения, зарождающиеся в ПП из-за температурных градиентов, вызывают непредсказуемые коробления, которые не всегда обратимы. Особенно большие градиенты возникают при групповых методах пайки, если в процессе предварительного подогрева ПП не приобрела температуры, равной или немного более температуры стеклования связующего. Резкий перепад температур от стороны пайки в направлении монтажа сопровождается значительными напряжениями сдвига, которые могут вызвать не только коробление ПП, но и ее разрушение.


4. Плотность межсоединений

4.1 Методы увеличения плотности монтажа ПП

Существует четыре пути повышения плотности межсоединений и монтажа компонентов на печатных платах:

• уменьшение размера отверстий и контактных площадок, чтобы высвободить пространство для трассировки проводников;

• увеличение количества трасс между отверстиями за счет уменьшения ширины проводников и зазоров;

• введение многоуровневых межсоединений: отказ от сквозных отверстий в пользу глухих и слепых межслойных переходов;

• увеличение количества слоев.

Следует отметить, что большая часть аппаратуры выполнена с использованием двусторонних печатных плат. Если возникает необходимость в особо плотном монтаже, современные технологии и средства проектирования позволяют обойтись 6… 10 слоями.

4.2 Влияние размеров и форм контактных площадок на плотность трассировки

Существенным сдерживающим фактором увеличения трассировочной способности является большой диаметр контактных площадок вокруг сквозных металлизированных отверстий. По существу, контактная площадка является той мишенью, в которую должно попасть отверстие при сверлении. Для выполнения предназначенных ей функций контактная площадка должна охватывать металлизированное отверстие или, по крайней мере, должна исключать торцевую связь проводника с металлизированным отверстием на ограниченном участке, как показано на рис. 2.9. Надежность торцевой связи гораздо меньше, чем прочность связи контактной площадки с отверстием по окружности, большей 180е.

Поэтому считается, что надежное соединение обеспечивается лишь при наличии гарантированного пояска охвата отверстия контактной площадкой. Его минимальные размеры обычно принимаются равными толщине фольги. Расчет минимального размера контактных площадок производят из условий обеспечения минимальной ширины гарантированного пояска охвата, с учетом всех неизбежных погрешностей производства. Рис. 2.10 показывает соотношение геометрических и позиционных погрешностей, принимаемые в расчете. Грубый расчет размера контактных площадок на твердых основаниях производят, ориентировочно, по формуле:


где J – минимальный размер контактной площадки наружного слоя; М–диаметр сверления; К – позиционная точность сверления; N – позиционная точность рисунка; АВ – отрицательный допуск на размер контактной площадки; С – минимальная ширина пояска охвата металлизированного отверстия контактной площадкой наружного слоя.

При расчете контактных площадок тонких оснований – учитывают дополнительные погрешности совмещения: погрешности базирования величин деформаций пленочных фотошаблонов и слоев после травления и прессования.

Некоторый выигрыш в уменьшении размера контактной площадки и соответсвующем увеличении трассировочного пространства можно получить за счет удлинения ее формы в сторону подхода проводника к контактной площадке, как показано на рис. 2.11.

Вообще говоря, контактная площадка, это геометрическое место точек, куда может попасть сверление. Поэтому ее размер должен поглотить это геометрическое место с какой-то вероятностью. Подробно об этом в соответствующем разделе.

Размеры контактных площадок существенно сказываются на трассировочной способности печатных плат. Например, в одном проекте уменьшение диаметра площадок с 1,4 до 1,0 мм позволяет более, чем втрое, увеличить плотность межсоединений, в то время, как уменьшение ширины проводников и зазоров с 0,3 до 0,15 мм позволяет увеличить ее лишь вдвое. Очевидно, что уменьшение диаметра контактных площадок или исключение их вообще может быть более действенным способом увеличения плотности межсоединений, чем уменьшение ширины проводников.

4.3 Уменьшение ширины проводников и зазоров

Очевидно, что уменьшение ширины проводников и зазоров позволяет увеличить количество трасс на каждом слое платы. К такому решению стремятся в производстве интегральных микросхем и печатных плат в течение многих лет. Но, все же, уменьшать ширину проводников бесконечно невозможно. Такое уменьшение ограничено токонесущими свойствами и омическим сопротивлением проводников. Омическое сопротивление, в еще большей мере, сказывается на работоспособности схем, когда они имеют большую длину, что для печатных плат не редкость. Существуют и технологические ограничения на ширину проводников, связанные непосредственно с производственным процессом выход готовой продукции резко падает, если требования к производственным процессам не укладываются в рамки нормальных допусков, определяемых применяемым оборудованием, материалами и параметрами климатической зоны производственных помещений.

Имеются также ограничения и на уменьшение расстояний между проводниками. Их размер определяется, исходя из требований к электрическим характеристикам, например, необходимостью снижения уровня перекрестных помех, минимизацией шумов, создания условий для безыскаженной передачи сигналов и формирования требуемого волнового сопротивления. Для силовой электроники следует считаться с ограничениями по электрической прочности изоляционных зазоров. Напряжение пробоя лакированных плат определяется электрической прочностью лакового покрытия, зазоры между открытыми проводниками на диэлектрическом основании пробиваются по поверхности платы. Электрохимическая форма пробоя не зависит от ширины зазора и не поддается прямому расчету.

Тем не менее, если удалось достичь уменьшения ширины проводников с учетом описанных ограничений, то это позволит эффективно повлиять на плотность и снижение себестоимости производства печатных плат, как показано на примере анализа одного из реальных производств. Видно, что уменьшение ширины дорожек со 150 мкм до 80 мкм позволяет вдвое уменьшить число сигнальных слоев и существенно снизить себестоимость производства печатных плат.

Снижение себестоимости осуществляется за счет снижения материалоемкости печатных плат. Было уже отмечено, что в составляющих себестоимости стоимость материалов стоит в первой строчке. Но эта мера снижения стоимости плат оправдана лишь в том случае, если созданы соответствующие производственные условия для уменьшения размеров проводников и зазоров. Для этого недостаточно иметь хорошее оборудование и материалы, нужны еще особые климатические условия в производственных помещениях, ответственных за этот процесс.

Тогда можно рассчитывать на приемлемый выход годной продукции. В противном случае уменьшение размеров проводников и зазоров или увеличит объем брака, или увеличит объем трудозатрат на исправление дефектов, уменьшит надежность печатных плат. То и другое увеличит себестоимость и, значит, не приведет к желаемому результату.

4.4 Увеличение количества слоев

Сегодня многие производства, желая показать свои достижения, говорят о возможностях изготовления МПП с большим количеством слоев и, соответственно, большой толщины. Действительно, раньше, когда использовались несовершенные САПР, всегда принимались волюнтаристские решения, ведущее прямо к достижению цели: когда на существующих слоях печатной платы не достатовало места для разводки всех необходимых внутрисхемных соединений, добаатяли еще один слой. Теперь, когда вопрос себестоимости приобрел первостепенную важность, при разработке многослойных ПП процесс проектирования направлен на минимизацию числа слоев, потому что каждый новый слой существенно увеличивает себестоимость печатной платы. Табл. 2.5 также демонстрирует, что любое увеличение количества сигнальных слоев в платах, работающих в составе высокопроизводительной или высокочастотной аппаратуры, когда требуется выдержать характеристики линий передач, будет вдвое больше, т. к. для них необходимо экранирование слоями земли и питания, прокладываемые между сигнальными слоями.

4.5 Оценка плотности межсоединений

Растущие конструктивно-технологические требования к печатному монтажу особенно четко установились в области вычислительной техники, поскольку увеличение производительности ЭВМ наряду с увеличением быстродействия элементной базы находится в непосредственной зависимости от возможностей сокращения длины связей между логическими элементами, так называемой конструктивной задержки передаваемого сигнала. Достаточно сопоставить значение времени переключения логических элементов, не превышающее в современных ИС, СИС и БИС единиц наносекунд, с временем распространения сигнала в печатных линиях связи, составляющем 6…7 нс/м, чтобы показать, что главной составляющей временных задержек в электронных устройствах современного и перспективного типов являются задержки в межсоединениях. Отсюда следует, что повышение быстродействия логических элементов должно сопровождаться максимально возможным снижением задержек в межсоединениях, т.е. сокращением их длины. Это достигается повышением степени интеграции логических элементов и более плотной компоновкой микросхем на платах.