Смекни!
smekni.com

Исследование частотных характеристик типовых динамических звеньев (стр. 3 из 4)

Рисунок 31 – Структурная схема для исследования колебательного звена при неизмененной постоянной времени (

) и изменении декремента затухания (
)

Рисунок 32 – Логарифмические частотные характеристики колебательных звеньев при изменении постоянной времени (

) и неизменном декременте затухания (
)

Рисунок 33 – Переходные функции колебательного звена при неизмененной постоянной времени (

) и изменении декремента затухания (
)

i. Реализация колебательного звена

Реализуем колебательное звено с постоянной времени

и коэффициентом демпфирования
на
-контуре (рисунок 34). ЛАЧХ и ЛФЧХ данного звена и необходимого колебательного звена представлены на рисунке 35, а, а их переходные функции – на рисунке 35, б.

Рисунок 34 – Электрическая принципиальная схема колебательного

-контура

а) б)

а) ЛАЧХ и ЛФЧХ;б) переходная функция

Рисунок 35 – Характеристики колебательного звена и

-контура

При анализе графиков частотных характеристик и переходных процессов (рисунок 35) колебательных звеньев можно сделать следующие выводы:

· увеличение (уменьшение) постоянной времени звена при неизменном декременте затухания приводит к сдвигу частотных характеристик влево (вправо).

· при неизменном коэффициенте демпфирования увеличение постоянной времени звена приводит к сужению полосы пропускания; колебательность переходного процесса не меняется.

· при неизменной постоянной времени увеличение (уменьшение) коэффициента демпфирования приводит к уменьшению (увеличению) колебательности переходного процесса и к более плавной ЛФЧХ.

· при неизменной постоянной времени увеличение (уменьшение) коэффициента демпфирования приводит к уменьшению (увеличению) перерегулирования, сужению (расширению) полосы пропускания и уменьшению (увеличению) колебательности.

3. Исследование дифференцирующих звеньев

a. Исследование частотных характеристик идеального дифференцирующего звена

Для исследования частотных характеристикидеального дифференцирующего звена в прикладном пакете Proteus\ISIS составляем структурную схему, представленную на рисунке 36. Логарифмические частотные характеристики идеального дифференцирующего звена представлены на рисунке 37, график переходной функции – на рисунке 38.

Рисунок 36 – Структурная схема для исследования идеального дифференцирующего звена

Рисунок 37 – Логарифмические частотные характеристики идеального дифференцирующего звена


Рисунок 38 – Переходная функция идеального дифференцирующего звена

b. Реализация идеального дифференцирующего звена

Реализуем идеальное дифференцирующее звено схемой, изображенной на рисунке 39. ЛАЧХ и ЛФЧХ дифференцирующего звена представлены на рисунках 40 и 41, переходная функция – на рисунке 42.

Рисунок 39 – Электрическая принципиальная схема дифференцирующего звена

Рисунок 40 – ЛАЧХ и ЛФЧХ дифференцирующего звена

Рисунок 41 – ЛАЧХ и ЛФЧХ дифференцирующего звена с инвертором


а)

б)

Рисунок 42 – Переходная функция схемы реализации идеального дифференцирующего звена


c. Исследование частотных характеристик реального дифференцирующего звена

Для исследования частотных характеристикреальногодифференцирующего звена в прикладном пакете Proteus\ISIS составляем структурную схему, представленную на рисунке 43. Логарифмические частотные характеристики реальногодифференцирующего звена представлены на рисунке 44, переходные функции – на рисунке 45.

Рисунок 43 – Структурная схема для исследования реальногодифференцирующего звена


Рисунок 44 – Логарифмические частотные характеристики реальногодифференцирующего звена

Рисунок 45 – Переходные функции реальногодифференцирующего звена

d. Реализация реального дифференцирующего звена

Реализуем реальноедифференцирующее звено с помощью схем, изображенных на рисунке 46. ЛАЧХ и ЛФЧХ дифференцирующего звена представлены на рисунках 47, переходные функции – на рисунке 48.

а)б)

а)

-цепочка;б)
-цепочка

Рисунок 46 – Электрические принципиальные схемы реального дифференцирующего звена

Рисунок 47 – ЛАЧХ и ЛФЧХ схем реализации дифференцирующего звена


Рисунок 48 – Переходная функция схемы реальногодифференцирующего звена


4. Исследование интегрирующих звеньев

a. Исследование частотных характеристик идеального интегрирующего звена

Для исследования частотных характеристикидеального интегрирующего звена в прикладном пакете Proteus\ISIS составляем структурную схему, представленную на рисунке 49. Логарифмические частотные характеристики идеального интегрирующего звена представлены на рисунке 50, график переходной функции – на рисунке 51.

Рисунок 49 – Структурная схема для исследования идеального интегрирующего звена

Рисунок 50 – Логарифмические частотные характеристики идеального интегрирующего звена


Рисунок 51 – Переходная функция идеального интегрирующего звена

b. Реализация идеального интегрирующего звена

Реализуем идеальное интегрирующее звено схемой, изображенной на рисунке 52. ЛАЧХ и ЛФЧХ интегрирующего звена представлены на рисунках 53 и 54, переходная функция – на рисунке 55.

Рисунок 52 – Электрическая принципиальная схема интегрирующего звена


Рисунок 53 – ЛАЧХ и ЛФЧХ интегрирующего звена

Рисунок 54 – ЛАЧХ и ЛФЧХ интегрирующего звена с инвертором


Рисунок 55 – Переходная функция схемы реализации идеального интегрирующего звена

c. Исследование частотных характеристик реального интегрирующегозвена

Для исследования частотных характеристикреальногоинтегрирующего звена в прикладном пакете Proteus\ISIS составляем структурную схему, представленную на рисунке 56. Логарифмические частотные характеристики реальногоинтегрирующего звена представлены на рисунке 57, переходные функции – на рисунке 58.