Содержание
1 Шахтные печи цветной металлургии .....................................4
1.1 Особенности тепловой работы ...................................................4
1.2 Особенности теплообмена в слое ……………………………….…6
2 Конструкция и основные показатели работы ………………………11
2.1 Устройство печи ……………………………………………………12
Список использованных источников …………………………………16
1 Шахтные печи цветной металлургии
1.1 Особенности тепловой работы
Тепловая работа шахтных печей цветной металлургии отличается рядом особенностей, обусловленных видом и параметрами протекающих в них технологических процессов. Шахтные печи широко применяют на заводах цветной металлургии для плавки кусковой руды, брикетов, агломерата и различных промежуточных продуктов металлургического производства, имеющих кускообразную форму. Помимо этого шахтные печи используют для переплавки вторичных металлов и катодной меди. Конечным продуктом шахтной плавки в зависимости от вида технологического процесса могут быть штейн или черновой металл и шлак. При плавке кусковых материалов в печь сверху загружается шихта вместе с твердым топливом, роль которого обычно выполняет высококачественный кокс.
В зависимости от вида перерабатываемого материала топливные шахтные печи могут иметь два принципиально различных режима работы, основанных на газогенераторном и топочном процессах. Печи, работающие на базе газогенераторного процесса, применяют для плавки окисленных руд и аналогичных им по составу шихтовых материалов. В них на участке сжигания топлива, наряду с генерацией тепла, протекают процессы образования газообразной восстановительной среды, содержащей большое количество оксида углерода (СО). Оксид углерода, образующийся в результате газогенераторного процесса, используется при плавке как реагент для так называемого непрямого восстановления оксидов металлов, содержащихся в шихте. Прямым восстановителем является кокс. Однако энергозатраты на восстановление окислов при использовании в качестве реагента кокса, отнесенные к килограмму углерода, в 2,45 раза выше, чем в случае применения оксида углерода.
Шахтные печи с режимом работы на базе топочного процесса применяют для переработки сульфидных материалов и переплавки вторичных металлов и катодной меди. В печах для плавки сульфидов кислород дутья используется при горении топлива и как реагент для окисления части сульфидов железа и элементарной серы, выделившейся при термическом разложении минералов. В печи, таким образом, поддерживается окислительная атмосфера. В шахтных печах, применяемых для переплавки вторичных металлов и катодной меди, газовая фаза не является реагентом технологического процесса. Для того чтобы предотвратить угар металла, в рабочем пространстве печи обычно поддерживается восстановительная атмосфера. Однако образование больших количеств оксида углерода в процессе горения топлива является нежелательным явлением, так как оно сопровождается значительным потреблением тепла.
Шахтные печи цветной металлургии являются агрегатами непрерывного действия с режимом работы, характеризующимся неизменностью во времени основных параметров теплового и температурного режимов плавки. Конкретные значения параметров находятся в непосредственной зависимости от вида протекающего в печи технологического процесса и состава перерабатываемого сырья. В качестве примера рассмотрим процессы, осуществляемые в наиболее распространенных шахтных печах, применяемых на никелевых и свинцовых заводах.
Тепловая работа шахтных печей для плавки никельсодержащего сырья отличается крайней сложностью, и ее количественная оценка базируется на анализе теплового баланса процесса. Примерно 95—97 % тепла, используемого в зоне технологического процесса, поступает в нее при горении твердого топлива и 3—5 % в процессе шлакообразования. Эта энергия распределяется среди продуктов плавки следующим образом: примерно 40—45% расходуется на нагрев и расплавление шихты; 12—14 % — на осуществление эндотермических реакций и 21—22 % отводится с газообразными продуктами сгорания топлива и техническими газами. Потери тепла на нагрев воды в кессонах составляют около 22 – 24 %.Температурный режим плавки пока еще не поддается расчету и выбирается опытным путём. При определении его параметров необходимо учитывать, что протекающие в печи процессы нагрева и расплавления шихты сопровождаются многочисленными экзотермическими реакциями. К экзотермическим реакциям относятся, в основном, углерода и шлакообразование.
Эндотермические реакции протекают в широком диапазоне температур и могут быть условно разделены на три группы, к которым относятся: образование газообразного реагента-восстановителя, состоящего из оксида углерода; диссоциация содержащихся в шихте основных флюсов и сульфидирующих компонентов; восстановление оксидов и сульфидирование переходящих в штейн металлов.
Газообразные продукты сгорания топлива, фильтруясь через слой шихтовых материалов, поднимаются вверх по шахте и постепенно охлаждаются за счет того, что в процессе теплообмена передают тепло шихте и активно участвуют в эндотермических реакциях. Восстановление диоксида углерода (СО2) начинается сразу же после выхода газов из зоны горения и продолжается до тех пор, пока они не охладятся до 700 °С. Образующийся в этих условиях оксид углерода взаимодействует с оксидами содержащихся в шихте металлов. Наиболее интенсивно протекает восстановление оксида никеля, начинающееся при 250—300 °С. Для восстановления магнетита до оксида железа, имеющего большое значение в процессах формирования шлака, необходимы температуры свыше 900 °С и концентрация оксида углерода в газовой фазе не менее 23 %.
Тепло, полученное материалом слоя в процессе теплообмена, расходуется на нагрев и плавление шихты, а также на диссоциацию и сульфидирование. Диссоциация известняка и сульфидирующих реагентов типа пирита происходит при температурах свыше 600—650 °С. Реакции сульфидирования металлов идут в широком интервале температур от 800 до 1300 °С.
В нижней части шахты, где накапливаются жидкие продукты плавки, температурный режим определяется условиями наиболее полного разделения шлака и штейна. Температура шлака, как правило, поддерживается на уровне 1400 °С, температура штейна во многом зависит от его состава. С уменьшением содержания серы в штейне его температура должна увеличиваться, чтобы избежать настылеобразования, связанного с выпадением кристаллов ферроникеля. Например, при концентрации серы в штейне около 15 % выделение кристаллов ферроникеля начинается при 1250 0С, а для штейна, содержащего 21 % серы — при 1100°С.
В шахтных печах свинцовых заводов плавят сырьевые материалы (агломерат), содержащие свинец в форме легковосстановимых оксидных соединений. В результате их переработки получают черновой металл, в который переходят также медь, олово, висмут, золото, серебро и некоторые другие компоненты шихты. Трудновосстановимые оксиды, например, железа и цинка, соединяясь с диоксидом кремния, переходят в шлак. Помимо оксидов металлов в шихте содержится небольшое количество сульфидных соединении, которые при плавке могут образовывать самостоятельную фазу — штейн и шпейзу.
Восстановление оксида свинца начинается практически сразу после того, как шихта попадает в печь при температуре 160 - 180 0С. Интенсивность этого процесса нарастает по мере прогревания шихты, достигая максимального значения при температурax порядка 750—1000 °С. Плавление шихты начинается задолго завершения процессов восстановления. Эвтектики сплав свинца и меди плавятся при 550 °С, смесь оксидов свинца и сурьмы при 550 °С, ферриты свинца при 752 °С и т. д.
Легкоплавкая жидкая фаза образуется уже в верхних частях шахты и движется вниз гораздо быстрее, чем слой твердого материала. На своем пути она вступает в многочисленные технологические реакции с твердой шихтой и коксом. В результате в центральной части печи слой в основном состоит из кокса и остатков нерасплавившейся шихты. Между ними идет интенсивное взаимодействие, протекающее с. потреблением большого количества тепла, и поэтому температура на этом участке зоны технологического процесса невелика и составляет примерно 1300—1350 0С. То, что значительная часть оксидов восстанавливается непосредственно углеродом, влечет за собой некоторый перерасход кокса. В нижних частях шахты, где в зону технологического процесса подается газообразный окислитель (воздух, или дутье, обогащенное кислородом), до 75 % площади поперечного сечения печи занято коксом, свободным от шихты (коксовая постель). Температура здесь достигает 1400—1450 °С. Жидкие продукты плавки на выходе из печи имеют существенно более низкую температуру: шлак порядка 1200 °С, штейн 1000—1050 °С.
1.2 Особенности теплообмена в слое
Топливные печи широко применяются в цветной металлургии. К исследованию теплообмена в условиях слоя кусковых материалов, двигающихся навстречу потоку газов, как это имеет место в шахтных печах, многие десятилетия привлечено внимание ученых и инженеров. В нашей стране наиболее значительные работы в этой области выполнены во Всесоюзном научно-исследовательском институте металлургической теплотехники (ВНИИМТ) и Уральском политехническом институте.
Теплообмен в слое представляет собой крайне сложный случай теплообмена. Плотный слой образуется кусками различной формы и размеров, имеющими различные теплофизические свойства. Сложный характер движения кусков значительно затрудняет определение реальной поверхности теплообмена. Различная величина зазоров между кусками влияет не только на особенности омывания их газами, но делает неразделимыми процессы теплопроводности, излучения и конвекции, действующие в слое. Поэтому приходится применять общий коэффициент, учитывающий все три вида теплообмена. Из-за неопределенности поверхности теплообмена более удобно использовать объемный коэффициент теплоотдачи αv [Вт/(м3 ∙ К). Связь его с обычным коэффициентом теплоотдачи α [Вт/(м2 ∙ К) выражается следующим образом: αv = αF, где F – поверхность нагрева, заключенная в 1 м3 слоя кусковых материалов, м2.