Смекни!
smekni.com

Коррозийно-механическое изнашивание оборудования (стр. 2 из 3)

Изнашивание центробежных водяных насосов

Центробежные водяные насосы перекачивают морскую, речную, прудовую (или из скважин) воду с различным содержанием солей и взвешенных частиц. В ходе технологического процесса на предприятиях пищевой, химической и иных отраслей промышленности насосы перекачивают как кислые, так и щелочные воды. Для защиты от коррозии валы центробежных водяных насосов облицовывают рубашками (защитными втулками) из бронзы, стали или чугуна, работающими в паре трения с сальниковой набивкой. Если материал защитных втулок не способен образовать прочные пленки, то изнашивание будет коррозионно-механическим, а интенсивность его при прочих равных условиях зависит от агрессивности перекачиваемых вод. Об интенсивности изнашивания втулок можно судить по данным Н.А. Сологуба. На центробежных насосах низкого давления при перекачке прудовой воды средний износ защитных втулок из серых перлитного и перлито-ферритного чугунов и из сталей Ст2и СтЗ составлял 0,019-0,044 мкм на 1000 м пути при скорости скольжения 3,38...4,13 м /с, что за 160 сут. работы в отдельных случаях давало максимальный износ 2,3 мм с каждой стороны. При транспортировании жомовых вод на сахарных заводах средний износ втулок составлял уже 0,23...0,26 мкм на 1000 м пути скольжения.

Изнашивание деталей оборудования пищевой промышленности

Особой разновидности коррозионно-механического изнашивания подвержены рабочие органы машин по переработке сырья, содержащего жирные кислоты. К таким машинам относятся, например, шнек-прессы для производства растительного масла, машины для резки, дробления, размалывания и перемешивания сырья на мясокомбинатах. На эту разновидность изнашивания впервые обратил внимание Г.А. Прейс [3].

Жирные кислоты являются поверхностно-активными веществами из них олеиновая и стеариновая, входящие в большом количестве в состав растительных масел и животных жиров, проявляют высокую активность. Действие поверхностно-активных веществ в свете эффекта Ребиндера рассматривалось в гл.2. Адсорбируясь и проникая в микро- и субмикротрещины металлической поверхности, в особенности при наличии в ней растягивающих напряжений, поверхностно-активные вещества размягчают поверхность, облегчают пластическое течение в тончайшем поверхностном слое; дело может дойти до сильного разупрочнения и разрывов под действием сил трения. Это дополняется коррозионным действием кислот.

Исследование деталей шнек-прессов, использовавшихся для получения из подсолнечных семян масла, показало, что рабочие поверхности деталей, соприкасающиеся только с мезгой и маслом, становятся полированными, хотя их износ значителен. Шероховатость поверхностей понижается с R? = 20...10 мкм до Ra-0,32...0,16 мкм. Изнашивание протекает в виде диспергирования.

Эти примеры можно дополнить другими, взяв оборудование торфодобывающей, угольной, химической промышленности и др.

Геометрия поверхности как функция процесса обработки

Шероховатость обработанной поверхности обусловлена не только геометрией процесса резания, но и пластическими деформациями материала при этом процессе и вибрацией инструмента. Для пояснения обратимся к анализу процесса точения пластичных материалов с точки зрения качества формируемой поверхности.

При скоростях резания 1...2 м/мин углеродистых конструкционных сталей образуется стружка скалывания (элементная стружка). Она легко отделяется при малом тепловыделении и без заметной пластической деформации обработанной поверхности. Микронеровности незначительны, а форма их впадин близка к форме вершины резца. При увеличении скорости резания до 20...30 м/мин изменяется характер стружкообразования и шероховатость поверхности возрастает. Рост скорости резания сопровождается повышением температуры в зоне резания и значительным давлением (несколько тысяч гигапаскалей). Это давление вызывает пластическое течение как в отделяемом металле, так и в заготовке выше и ниже линии среза (рис.1.11).


Рис.1.11 Образование деформированного слоя при резании пластичного металла: 1-основная структура обрабатываемого металла; 2-зона пластической деформации; 3-стружка; 4 - пластически деформированный, поверхностный; слой; 5 – инструмент.



Высота неровностей в зависимое от скорости резанья стали

Стружка обтекает вершину резца; при этом наиболее удаленный от резца слой стружки имеет скорость, близкую к скорости резания, а слой, непосредственно соприкасающийся с передней гранью, подвержен сильному тормозящему действию сил трения. В итоге наиболее близкие к передней грани резца слои прилипают к ней, образуя застойную зону или нарост на лезвии инструмента. Металл начинает течь по наросту.

В процессе резания к наросту привариваются новые слои, пока он не достигнет максимально возможных размеров в данных условиях. Вершина нароста, выступая впереди лезвия инструмента, режет металл, оставляя глубокие борозды на обрабатываемой поверхности, а в бороздах следы весьма неровной кромки.

Время от времени вершина нароста обламывается и уносится частично со стружкой, а частично вдавливается в обработанную поверхность, увеличивая ее шероховатость. Процесс образования нароста повторяется. Нарост имеет наибольшую высоту и наибольшую стойкость при температуре около 200°С. В этой области конструкционные стали имеют наибольший предел прочности. Возрастание скорости резания выше 20 м/мин приводит к увеличению выделяемой в процессе стружкообразованием теплоты и к росту температуры нароста. Прочность нароста снижается и он разрушается при меньшей высоте. При скорости резания более 80 м/мин нарост не образуется (рис.1.12).

Отсутствие нароста при резании не означает, однако, что действительный профиль обработанной поверхности даже при отсутствии вибраций будет совпадать с теоретическим. Пластическое течение материала в зоне резания вызывает дополнительное увеличение высот неровностей. Кроме того, перемещение задней грани инструмента по свежеобразовавшейся поверхности, не успевшей покрыться слоем окислов, сопровождается мельчайшими задирами, играющими существенную роль в образовании дополнительных неровностей.

При обработке чугуна и других хрупких материалов образуется стружка надлома, элементы которой могут скалываться либо по линии среза, либо по границам зерен. При малой скорости резания зерна не подрезаются, а вырываются, и впадины неровностей располагаются под линией среза. При высоких скоростях резания зерна не вырываются, неровности образуются преимущественно режущим лезвием инструмента, и шероховатость обработанной поверхности снижается.

Процесс образования неровностей на обрабатываемой поверхности при торцовом фрезеровании в значительной мере аналогичен образованию неровностей при точении. При цилиндрическом фрезеровании как по направлению, так и против направления подачи образуются неровности с шагом, равным подаче на один зуб фрезы; продольная шероховатость обычно больше поперечной. На высоту неровностей влияет также неточное расположение режущих кромок различных зубьев фрезы по радиусу, эксцентричность осей фрезы и оправки и неточность станка.

Рассмотрим для примера наружное круглое шлифование. Специфические особенности шлифования следующие: отсутствует сплошная режущая кромка; зерна абразива имеют неправильную геометрическую форму и расположены беспорядочно на рабочей поверхности шлифовального круга; зерна абразива хрупкие и способны разрушаться по плоскостям спайности при динамическом воздействии абразивного зерна на обрабатываемый поверхностный слой и наличии интенсивного скольжения зерен по металлу за время, предшествующее непосредственному их врезанию.

При первом рабочем обороте шлифовального круга абразивные зерна прорезают канавки в некотором продольном сечении заготовки. При следующем обороте в том же сечении они делают новые канавки, а также выравнивают и уменьшают высоту первых неровностей. Постепенно число канавок возрастает, размеры не срезанных участков уменьшаются, а вместе с ними снижается и шероховатость поверхности. С увеличением частоты вращения круга возрастает эффект выравнивания неровностей. На размеры неровностей существенно влияет продольная подача при правке круга алмазным карандашом, вытачивающим на периферии круга канавку хода, равного подаче алмаза за один оборот круга. Неровности увеличиваются при возрастании подачи. Неровности шлифованной поверхности не имеют регулярного шага.

Большинство абразивных зерен шлифовального круга имеют неблагоприятную для резания форму граней. Расщепление зерен и округление их граней в процессе работы еще более ухудшают геометрию. Поэтому шлифование протекает при более высоком давлении, чем при любом другом методе обработки металлов резанием. Значительные силы трения в процессе шлифования, скольжение зерна по обрабатываемой