Приведений коефіцієнт тертя прецизійних опор кочення високошвидкісних роторних механізмів достатньо великий та може змінюватись в межах від 0,002 (для шарикопідшипників) до 0,01 (роликові підшипники) [1]. Аналогічний показник газових опор складає 0,0001 та визначається в основному тільки в’язким тертям усередині шару газової змазки [1]. Приведений коефіцієнт тертя магнітних опор обумовлений гальмівним ефектом магнітного поля, а момент тертя та втрати потужності на тертя збільшуються із збільшенням частоти обертання. Приведений коефіцієнт тертя газомагнітної опори може бути рівний аналогічному параметру газових опор та практично не залежить від частоти обертання.
Швидкохідність високошвидкісних роторних механізмів з прецизійними опорами кочення обмежена значними втратами на тертя та не перевищує 2,5 10 5 хв-1 при короткочасному ресурсі роботи та 4 10 4 хв-1 при довгостроковому. Швидкохідність роторних механізмів з газовими опорами може досягати значення 6,5 106 хв-1 [2]. Перевищення вказаної швидкості приводить до появлення динамічної нестійкості опори, що проявляється у вигляді напівшвидкісного або синхронного вихорів. Швидкохідність магнітного підвісу, що перевищує швидкохідність газового підвісу, обмежена різко зростаючими при збільшенні частоти обертання втратами на тертя. Швидкохідність газомагнітної опори практично обмежена механічною міцністю обертаючихся вузлів роторного механізму та може значно перевищувати швидкохідність газових чи магнітних опор.
Жорсткість опор кочення значно поступається аналогічному параметру газових опор, що обумовлюється більшою різницею площин, що передають навантаження від валу до корпусу опори, а також великою кількістю зазорів в опорах кочення. Жорсткість магнітних опор, поступається аналогічному параметру опор кочення, зменшується при збільшенні частоти обертання та прямує до нуля. Жорсткість газомагнітної опори значно перевищує жорсткість газової опори. Це обумовлено тим, що площа газомагнітної опори, що передає навантаження, дорівнює площі поверхні ротору та значно перевищує площу робочої поверхні газової опори. Окрім того, жорсткість газомагнітної опори є сумою жорсткості газового шару та магнітного поля, що створює магнітні сили навантаження газового шару.
Стійкість є одним з найбільш слабких місць газових опор, що зв’язано з явищами напівшвидкісного та синхронного вихорів, а також з явищем «пневмомолотка» [3], які приводять до порушення шару газової змазки, і як наслідок, до появлення безпосереднього торкання робочих поверхнею та виходу газового підшипника із строю. Стійкість магнітних опор, яка знижується при підвищенні частоти обертання, забезпечується зовнішньою системою автоматичного керування та давачами величини зазору. Газомагнітний підвіс є стійкою системою, якій придатні властивості саморегулювання та адаптивності до зміні зовнішнього навантаження, чого не мають інші опори.
Демпфування коливань ротору в газомагнітному підвісі значно перевищує аналогічний параметр роторних механізмів з газовими чи магнітними опорами. Особливістю газомагнітного підвісу є адаптивність його демпфучих властивостей до зміни зовнішнього навантаження.
Віброакустична активність, яка є важливим параметром роторного механізму, збільшується при збільшенні частоти обертання. Якщо віброакустична активність високошвидкісних роторних механізмів з прецизійними опорами кочення досить велика (що пояснюється механічними контактами в опорах та неспіввісністю зазорів опор та приводу), то відсутність механічних контактів у газових та магнітних опорах зменшує віброакустичну активність роторних механізмів з такими опорами на 10 – 15 дБА. Відсутність механічних контактів та неспіввісності робочих зазорів в роторних механізмах з газомагнітними опорами зменшує їх віброакустичну активність на 10-15 дБА у порівнянні з опорами кочення та на 5-10 дБА у порівнянні з газовими та магнітними опорами.
Несуча здатність опор кочення значно перевищує несучу здатність газових опор [3]. Підвищення несучій здатності газових опор зв’язано з підвищенням площі робочої поверхні газового підшипника або із збільшенням тиску наддуву, а значить, із збільшення масо-габаритних параметрів або енергоємності роторного механізму. Підвищення несучої здатності магнітних опор зв’язано з підвищенням щільності магнітного потоку збудження, а значить, з підвищенням втрат на тертя та зменшення жорсткості та стійкості при підвищенні частоти обертання. У газомагнітній опорі, що об’єднує в одному зазорі функції зазору газомагнітного підшипника та зазору електричної машини, площа робочої поверхні опори дорівнює площі робочої поверхні ротору та значно перевищує площу робочої поверхні газової опори. Відповідно, несуча здібність газомагнітної опори значно перевищує несучу здібність газової опори, наближаючись за своєю величиною до несучої здібності підшипників кочення.
Кількість робочих зазорів у роторних механізмах з прецизійними опорами кочення складає як правило від 3 до 6 зазорів. Неспіввісність, яка з’являється внаслідок великої кількості зазорів, значно збільшує віброакустичну активність роторного механізму. Заміна опор кочення газовими або магнітними опорами не змінює конструктивної схеми роторного механізму та збільшує кількість робочих зазорів у зв’язку з необхідністю одночасного використання радіальних та осевих опор, що приводить до ускладнення конструкції.
Газомагнітний підвіс ротору здійснюється безпосередньо в робочому зазорі електричної машини, що дозволяє обмежити кількість робочих зазорів роторного механізму одним зазором, що об’єднує функції зазору безконтактної газомагнітної опори та зазору електричної машини. Така конструктивна схема не потребує співвісності зазорів опорних вузлів електричної машини, спрощує конструкцію роторного механізму та забезпечує його високу технологічність.
Надійність роторних механізмів з газомагнітними опорами майже на порядок перевищує надійність механізмів з газовими та магнітними опорами та майже на два порядки надійність опор на підшипниках кочення.
Порівняльний аналіз різних типів опор, який наведено вище, показує, що роторні системи з газомагнітними опорами, незначно поступаються механізмам з опорами кочення по несучій здібності, а по усім іншим параметрам перевершують високошвидкісні роторні системи з прецизійними опорами кочення, газовими та магнітними опорами. Це обумовлює добрі перспективи подальшого розвитку газомагнітних опор.
Підприємствами Ізраїлю, США, Німеччини, деякими підприємствами хімічної та електротехнічної промисловості України випускалися та випускаються синхронні гістерезисні ЕМ з газомагнітним підвісом, які мають дисковий та конічний ротор. Вони часто використовуються у текстильній промисловості (веретена, прядильні машини), хімічній промисловості (розпилювачі), медицині (апарати для створення штучної атмосфери соляних печер) західних держав та держав СНД. Найбільш розповсюдженими з них є ЕМ з конічним ротором. Це обумовлено високою стійкістю конічного ротору як в осевому так і в радіальному напрямку.
В теперішній час для контролю параметрів ЕМ з газомагнітним підвісом ротору використовуються традиційні пристрої, що не завжди забезпечує високу вірогідність контролю. Математичні моделі цих ЕМ не досліджені з точки зору визначення аналітичних виразів для контролю їх основних параметрів, не існують пристрої контролю, що враховують їх специфіку. Тому в якості об’єкту контролю доцільно обрати синхронну гістерезисну ЕМ з газомагнітним підвісом конічного ротору, як одну з найбільш розповсюджених високо оборотних ЕМ.
Високоточний контроль та вимірювання кутової швидкості має велике значення не тільки при випробуваннях ЕМ, а в багатьох випадках і під час їх роботи. Це стосується систем точних приводів, систем автоматики, у яких ЕМ є складовими компонентами, систем, у яких відбувається керування електроприводами. Складним завданням є високоточний контроль та вимірювання кутової швидкості у динамічному режимі, контроль та вимірювання залежності кутової швидкості від часу - швидкісних діаграм. Контроль кутової швидкості у динамічному режимі ускладнюється рядом причин :
- контроль кутової швидкості у динамічному режимі проводиться за короткий проміжок часу;
- інформативні параметри змінюються у широкому діапазоні;
- виникає необхідність сумісних вимірювань часу та кутової швидкості;
- необхідність вияву короткочасних змін - «голкових провалів моменту», які
суттєво погіршують якість механічної енергії, сприяють виникненню ударів в
механічній трансмісії, що має зазори, з якою з’єднана ЕМ;
- відсутність методик розрахунку динамічних метрологічних характеристик;
Рівняння обертання валу ЕМ описується наступним рівнянням [4]:
, (1.5)де М0 - момент опору на валу,
М
- обертаючий (електромагнітний) момент.Динамічний момент ЕМ визначається лівою частиною рівняння (1.5) та дорівнює різниці між обертаючим моментом та моментом на валу, визначає кутове прискорення ротору та зв’язаних з ним мас.
. (1.6)Момент опору обумовлений наявністю зовнішніх мас, що зв’язані з валом ЕМ. Він може існувати у перехідних та усталеному режимах роботи та бути відсутнім при випробуваннях ЕМ, може змінюватись у часі та залежати від кутової швидкості, але він характеризує зовнішні маси, а не саму ЕМ. При відсутності моменту опору на валу динамічний момент дорівнює обертаючому.
Аналіз виразу (1.5) свідчить про необхідність проведення вимірювання та контролю кутової швидкості в динамічному режимі та контролю моменту інерції для контролю та визначення параметрів руху.