Момент інерції ротору є однією з найважливіших характеристик ЕМ, яка визначає її динамічні властивості. Однак у довідковій літературі та технічних умовах на ЕМ він вказується не завжди. У відповідності з [5] момент інерції ротору може мати великі відхилення від номінального значення (
де
Незважаючи на універсальність, цей метод має такі суттєві недоліки, як необхідність розбирання ЕМ та велику трудомісткість, що значно обмежує його використання. За допомогою цього методу неможливий контроль моменту інерції ЕМ в процесі їх роботи та без їх демонтування.
Нині відомі наукові розробки, що присвячені визначенню параметрів та характеристик ЕМ з аналізу динамічних режимів їх роботи [6, 7]. У роботах [8, 9], розроблено спосіб визначення моменту інерції та моменту опору на валу за допомогою двох зразкових мас з відомими моментами інерції на основі використання інформації про зміну кутової швидкості. Він полягає у вимірюванні кутового прискорення у режимах пуску та самогальмування асинхронної трифазної ЕМ при встановлених на валу зразкових масах. На основі отриманих результатів вирішується система рівнянь, з якої знаходяться шукані величини. Цей метод має високу точність, та у порівнянні з іншими методами, високу швидкодію, але він не придатний для контролю моменту інерції ЕМ з газомагнітним підвісом ротору, тому як для більшості таких машин режим самогальмування відсутній, а зупинення здійснюється примусово, шляхом подання постійної напруги замість змінної напруги живлення, що створює гальмівний момент.
Для контролю моменту інерції таких ЕМ перспективним є спосіб, заснований на визначенні амплітуди крутильних коливань ротору під час їх роботи в усталеному режимі. Але він потребує подальшої розробки для визначення аналітичних співвідношень, що зв’язують контролюємий параметр з вихідними параметрами ЕМ, інформацію про які можна отримати шляхом прямих вимірювань.
Механічна характеристика (МХ) є однією з найважливіших та найбільш інформативних характеристик ЕМ та визначається як залежність між обертаючим моментом та кутовою швидкістю обертання:
М=f(
або
що отримана при незмінних напрузі живлення та частоті мережі.
Вигляд МХ обумовлюється різноманітними початковими умовами та іншими параметрами. З великою кількості таких МХ виділяють пускову МХ, яка називається ще природною та вимірюється при підключені ЕМ до мережі живлення з номінальними параметрами при відсутності на валу моменту опору та додаткових моментів інерції. За МХ при відповідних умовах розраховуються статичні параметри ЕМ. Наприклад, для трифазної асинхронної ЕМ, МХ режиму реверсу при наявності належного додаткового моменту інерції, наближується до МХ статичного режиму, що дає можливість зменшити час вимірювань таких статичних параметрів, як початковий пусковий момент, максимальний момент та інші. Окрім цього за МХ характеристикою можливо оцінити деякі види браку. Наприклад, при асиметрії обмотки ротору асинхронного двигуна, форма МХ характеристики суттєво відрізняється від зразкової. При невірному з’єднанні секцій обмотки статору час розбігу затягнений у порівнянні із зразковим.
З вищесказаного слідує, що підвищення точності визначення не тільки механічної характеристики, а і багатьох інших параметрів ЕМ вимагає наявності високоточних пристроїв вимірювання та контролю кутової швидкості у статичному та динамічному режимах роботи об’єкту контролю, та точних автоматичних і швидкодіючих пристроїв контролю моменту інерції роторної системи для будь-якої ЕМ. Це обумовлює доцільність їх подальшої розробки та дослідження.
2. Техніко-економічне обґрунтування доцільності розробки комп’ютеризованої вимірювальної системи параметрів електричних машин з газомагнітним підвісом
2.1 Особливості вимірювання параметрів електричних машин з газомагнітним підвісом
Задачі контролю та управління якістю, які вирішуються на різних етапах процесів виготовлення та використання електромеханічних перетворювачів енергії (ЕМПЕ), є різноманітні та взаємопов’язані. В теперішній час, завдяки досягненням мікропроцесорної та вимірювальної техніки стало можливим використовувати автоматичні пристрої та системи різного рівня інтелекту для вимірювання та контролю різноманітних параметрів ЕМПЕ як в процесі їх виготовлення, так і під час їх експлуатації. В інформаційному забезпеченні систем контролю і управління якістю значна роль відводиться проведенню контрольно-вимірювальних, випробних та діагностичних робіт. Ці роботи спрямовані на отримання та використання інформації про показники надійності та якості виробляємих електричних машин. Відповідальними етапами на шляху створення інтегрованих систем вимірювання, контролю, управління якістю вироблюємих електричних машин є розробка та впровадження сучасних методів для промислового контролю, випробувань та діагностики.
При різних видах випробувань ЕМПЕ виникає необхідність вимірювання характеристик руху (ХР), а саме кутової швидкості обертання
Механічна характеристика (МХ) є однією з найважливіших та
найінформативніших характеристик ЕМПЕ та визначається як залежність між обертаючим моментом та кутовою швидкістю обертання М=f(
Вигляд МХ обумовлюється різноманітними початковими умовами та іншими параметрами. З великою кількості таких МХ виділяють пускову МХ, яка називається ще природною та вимірюється при підключенні ЕМ до мережі живлення з номінальними параметрами при відсутності на валу моменту опору та додаткових моментів інерції. За МХ при відповідних умовах розраховуються статичні параметри ЕМПЕ. Наприклад, для трифазного асинхронного електродвигуна, МХ режиму реверсу при наявності належного додаткового моменту інерції, наближується до МХ статичного режиму, що дає можливість зменшити час вимірювань таких статичних параметрів, як початковий пусковий момент, максимальний момент та інші. Окрім цього за МХ характеристикою можливо оцінити деякі види браку. Наприклад, при несиметрії обмотки ротора асинхронного двигуна, форма МХ характеристики суттєво відрізняється від зразкової. При невірному з’єднанні секцій обмотки статора час розбігу затягнений у порівнянні із зразковим [14].
Вимірювання МХ у перехідному режимі роботи ЕМПЕ має наступні особливості у порівнянні з вимірюванням в статичному режимі: динамічні вимірювання проводяться за короткий проміжок часу; інформативні параметри змінюються у широкому діапазоні; в деяких випадках виникає необхідність сумісних вимірювань (наприклад кутова швидкість вимірюється сумісно з часом, що потребує наявності двох вимірювальних каналів); необхідність вияву короткочасних змін - «голкових провалів моменту», які суттєво погіршують якість механічної енергії, сприяють виникненню ударів в механічній трансмісії, що має зазори, з якою з’єднано електродвигун; відсутність методик розрахунку динамічних метрологічних характеристик.