Смекни!
smekni.com

Конструктивное усовершенствование шасси самолета Ту-154 на основе анализа эксплуатации (стр. 9 из 12)

Чтобы увеличить площадь деревянных брусков, работающих на сжатие при затяжке болтов, увеличим диаметр болтов. В этом случае,


Принимаем болты М12 с диаметром d1 =10,16 мм.

2.3.3 Расчет направляющих для погрузки колес

Каждая направляющая состоит из двух уголковых профилей соединенных между собой. Под действием массы колеса, направляющая воспринимает силу Р1, которая раскладывается на составляющие Р1 и Р2 (Рис 2.2.).

Под действием силы Р1, направляющая работает на изгиб. В точке С (АС=СВ) балка будет воспринимать максимальный изгибающий момент (Рис 2.3.)

Рис.2.3.

Максимальный изгибающий момент в этой точке будет равен:

(2.4.)

где a=b=0,625 м – длины участков направляющей;

Р1 – нормальная составляющая силы Р,

, (2.5.)

Р =600Н – сила действующая на направляющую от колес;

α = 40˚ – угол установки направляющей;

Так как направляющая состоит из двух уголковых профилей, ее необходимо рассчитать на косой изгиб по формуле:

(2.6.)

где Х1 и Y1 – координаты точки, наиболее удаленной от нейтральной линии;

Ix и Iy – моменты инерции относительно осей X и Y.

Для уголкового профиля №4 по таблице сортамента [19] находим:

Х1 =1,53

10-2м; Y1 =0,78
10-2м;

Ix =7,26

10-8м-4; Iy =1,19
10-8м-4;

Найдем изгибающий момент относительно осей X и Y. Так как профиль симметричный относительно осей X и Y, то


(2.7.)

В связи с тем, что направляющая состоит из двух уголковых профилей, каждый профиль будет испытывать напряжение

(2.8.)

Под действием составляющей Р2 направляющая работает на растяжение.

Составляющая Р2 равна

(2.9.)

Напряжение растяжения равно

(2.10.)

где S=3,08

м2 – площадь сечения №4 [10].

Учитывая, что направляющая состоит из двух уголковых профилей,

(2.11.)

Используя теорию нормальных максимальных напряжений, проверим, удовлетворяют ли найденные значения напряжений условию:

, (2.12.)

где [σ] – предел прочности материала СТ 3 с учетом коэффициента запаса прочности.

К=0,2 – коэффициент запаса прочности.

(2.13.)

где σв=363 МПа – предел временной прочности материала СТ 3.

Условие выполняется, спроектированная направляющая выдержит заданную нагрузку.


2.3.4 Расчет грузоподъемного механизма

Для погрузки и выгрузки колес самолета из технического отсека установки используется гидроподъемный механизм (Рис. 2.4.).

2.3.4.1 Расчет секторного механизма

Рабочие условия, в которых будет работать предлагаемый секторный механизм:

1. Скорость вращения сектора n=7

;

2. Ресурс работы передачи – 10 лет;

3. Работа круглосуточная с часовой загрузкой 12 часов

4. Расчетный вращающий момент:

(2.14.)

где КР=1,2 – коэффициент режима;

Р – усилие на штоке гидроцилиндра;

L – плечо приложения усилия.

5. Передаточное отношение U=1;

6. В качестве материала колеса и рейки принимаем сталь 40Х с термообработкой рабочих поверхностей до твердости HRC=45-50.

7. Определим допускаемые контактные напряжения

а) предел контактной выносливости стали 40Х для выбранной термообработки, соответствующий базовому числу циклов, находим, используя соотношения таблицы 20.4 литературы [11].

(2.15.)

б) базовое число циклов определим путем линейной интерполяции по таблице 20.5 [11].

в) фактическая продолжительность работы механизма в течении одного года:

(2.16.)

где 365 – количество дней в году;

24 – количество часов в сутках;

γч = 0,06 – коэффициент часовой загрузки;


Фактическое число циклов нагружения:

(2.17.)

где с=1 – число зацеплений зуба за один оборот;

n=7

- скорость вращения сектора;

t=525,6 ч – продолжительность работы механизма в течении года;

.

г) определим коэффициент долговечности:

(2.18.)

где NHO= 6,4

107 – базовое количество циклов;

N'HE = 10

NHE = 10
220752 =2207520 – фактическая продолжительность работы механизма в течении всего срока эксплуатации;

.

д) предел контактной выносливости поверхности зубьев:

(2.19)

где

=795 МПа – предел контактной выносливости материала, соответствующий базовому числу циклов;

КHL=1,75 - коэффициент долговечности;

σNlim=795

1,75=1391,25 (МПа).

е) находим предварительное значение допускаемого контактного напряжения по формуле:

(2.20.)

где SH=1,2 – коэффициент безопасности для зубьев с поверхностным упрочнением;

– коэффициенты, учитывающие, соответственно, влияние шероховатости, окружной скорости, смазочного материала и размеров. В предварительных расчетах целесообразно принимать
=1;

тогда

8. Находим ориентировочное значение диаметра колеса (условно диаметр сектора)

(2.21.)

где

0,3 – коэффициент инерции колеса;

- коэффициенты, учитывающие динамичность нагрузки, чистоту поверхности и концентрацию напряжений соответственно;

Н=1;

М – потребный вращающий момент,

М=1,2

Р
L, (2.22.)

где Р=1200 Н – сила тяжести подвижных элементов,

L=0,625 м – плечо приложения силы тяжести относительно оси вращения;