В качестве вторичного прибора используется компенсатор самопишущий с унифицированным сигналом КСУ-1, со шкалой от 0 до 50 кгс/см², описание компенсатора находится в пункте 3.1.1. Описание технических характеристик прибора находится в таблице 3.
3.1.4 Контроль расхода редуцированного пара
В качестве первичного прибора для контроля расхода редуцированного пара применяется сужающее устройство диафрагма камерная ДК-100 на которой создаётся перепад давления. Принцип действия основан на измерении разности до и после сужающего устройства и по этой разности определяется расход пара, проходящего по паропроводу.
Таблица 6 Техническая характеристика сужающего устройства ДК 100
Параметры прибора | Величина прибора |
Условное давление, кгс/см² | 150 |
Внешний диаметр, мм | 50 |
Внутренний диаметр, мм | 35 |
Материал | Сталь Х17 |
Уравнительные сосуды предназначены для поддержания постоянства уровней конденсата в обеих импульсных трубках. Применяются для измерения расходов жидких, парообразных сред с температурой – 350 С. Нужны для поддержания равенства уровня конденсата в импульсных трубках. Обозначаются СКМ – малые, предназначены для работы с сильфонными, мембранными дифманометрами. Цифры в обозначении указывают на допустимое условное давление.
Таблица 7- Техническая характеристика СКМ–150-5
Параметры прибора | Величина прибора |
Наружный диаметр, мм | 13 |
Внутренний диаметр, мм | 10 |
Толщина, мм | 4 |
Давление, кгс/см² | 150 |
Тип | СКМ-150-5 |
В комплекте с сужающим устройством работает дифманометр, который присоединяется к нему при помощи импульсных трубок, которые предназначены для передачи давления от сужающего устройства к дифманометру.
Таблица 8 - Техническая характеристика импульсных трубок
Параметры прибора | Величина прибора |
Материал | Сталь Х17 |
Толщина стенки, мм | 2 |
Диаметр, мм | 8 |
В комплекте с сужающим устройством работает дифманометр – расходомер типа ДМ 3583М применяемый для непрерывного измерения расхода пара по перепаду давления в сужающем устройстве. Дифманометр имеет встроенный дифференциально - трансформаторный преобразователь. Дифманометры, измеряющие разности давлений до и после сужающего устройства, и по этой разности, определяющие расход газа, пара или жидкости называются дифманометрами – расходомерами.
Таблица 9 - Техническая характеристика дифманометра ДМ 3583М
Параметры прибора | Величина прибора |
Диапазон измерения, кгс/см² | 0 - 150 |
Питание, В | 220 |
Потребляемая мощность, ВА | 8 |
Класс точности | 1,5 |
Масса, кг | 18 |
В качестве вторичного прибора используется компенсатор самопишущий с дифференциально–трансформаторным преобразователем КСД-1, который предназначен для автоматического контроля расхода. Представляющий собой показывающий прибор с регистрацией на ленточной диаграмме. Состоит из ряда унифицированных блоков и модулей. Отдельные блоки соединяются при помощи штепсельных разъёмов.
Таблица 10 - Техническая характеристика КСД-1
Параметры прибора | Величина прибора |
Диапазон измерения, т/ч | 0 - 20 |
Питание, В | 220 |
Класс точности | 1 |
Потребляемая мощность, ВА | 35 |
Условия эксплуатации: | |
Влажность, % | 30 - 80 |
Температура окружающей среды, ˚С | 20±2 |
Масса. кг | не более 8 |
Габариты, мм | 200х160х420 |
3.1.5 Контроль температуры редуцированного пара
В качестве первичного прибора для контроля температуры редуцированного пара используется термопара ТХК, описание термопреобразователя находится в пункте 3.1.2. Описание технических характеристик прибора находится в таблице 4.
В качестве вторичного прибора используется компенсатор самопишущий с потенциометрической схемой КСП-2, со шкалой от 0 до 400˚С, описание компенсатора находится в пункте 3.1.2. Описание технических характеристик прибора находится в таблице 5.
3.2 Свойство системы регулирования и выбор регуляторов
Эффективность систем автоматического регулирования (САР) зависит от правильного выбора автоматического регулятора.
Приступая к проектированию САР , необходимо знать особенности технологического процесса, устройство, возмущения и управляющие воздействия, с помощью которых можно изменить значения регулируемых величин.
3.2.1 Объект регулирования – одноёмкостный, регулируемая величина–температура
Необходимые показатели качества регулирования:
- Максимальное динамическое отклонения регулируемой величины.
t, ˚С = 20˚С
- Время регулирования tp = 10с
- Система регулирования должна обеспечить апериодический переходный процесс
Для выбора автоматического регулятора необходимо знать статические и динамические характеристики объекта. Статической характеристикой объекта называется зависимость регулируемой величины от регулирующего воздействия в различных установившихся режимах.
Рисунок 1- Статическая характеристика
Рисунок 2 - Статическая характеристика
τ=2 с,
τ/Т= 2/2,5=0,8 ,
К об.=∆t/∆М=20/5=4
На основании отклонения τ/Т=0,8 принимается регулятор непрерывного действия.
По графикам характеризующим процесс выбора закона управления по динамическим параметрам определяем динамический коэффициент Rд который характеризует степень воздействия регулятора на стабилизацию технологического параметра.
При τ/Т=0,8 по таблицам определяем Rд и рассчитываем расчётное время регулирования.
Расчётное время регулирования не превышает требуемого времени, следовательно для данного объекта управления применяется пропорциональный закон управления имеющий Rд =0,85 и tp/ τ =8 (с) т.к он обеспечивает оптимальное время 10 сек.
Расчет параметров настройки Кр по приближённой формуле
Кр = 0,3*Т/Коб* τ =0,3*2,5/4*2 =0,09
Кр проверяется по графическим зависимостям
Кр=Кс/Коб =0,35/4 =0,087
С помощью уравнения проверяется устойчивость системы управления с использованием критериев Гурвица и Михайлова.
Система автоматического управления описана дифференциальным уравнением.
Критерий Гурвица
35р3+14р2+18,5р+1=0
а1=35а2=14 а3=18,5а4=1∆1=а1=35>0,
∆2=а1*а2+0*а3=35*14=490>0,
∆3=а1*а2*а3+0*а1*0+а4*0*а3+0*а2*0+а4*а1*а1+а3*0*а3=35*14*18,5=9065>0
Согласно условию критерия Гурвица система устойчива.
Критерий устойчивостиМихайлова.
35р3+14р2+18,5р+1=0,
p= iω,
35iω+14iω-18,5iω+1=0,
-35iω3-14iω2+18,5iω+1=0
Исходное уравнение делится на два равенства действительное и мнимое.
U(ω)=-14iω2+1=0,
V(ω)=-35iω3-18,5iω=0
Придавая ω значение ω=0; 0,25; 0,5; 0,75; 1; 1,5; 2; результаты расчета действительной и мнимой частей сводится в таблицу 11.
Таблица 11 – Таблица действительных и мнимых значений
ω | 0 | 0,25 | 0,5 | 0,75 | 1 | 1,5 | 2 |
U(ω) | 1 | -0,875 | -2,5 | -6,875 | -13 | -20,875 | -55 |
V(ω) | 0 | 5,165 | 4,875 | 0,885 | -16,25 | -45,714 | -243 |
Рисунок 3 -Гадогроф
Согласно условию Михайлова система устойчива
3.2.2 Объект регулирования–одноёмкостный, регулируемая величина–давление
Необходимые показатели качества регулирования:
- Максимальное динамическое отклонения регулируемой величины.
t, ˚С = 2 кгс/см²
- Время регулирования tp = 15с
- Система регулирования должна обеспечить апериодический переходный процесс
Рисунок 4 - Статическая характеристика
Рисунок 5 - Кривая разгона
τ=1 с,
τ/Т= 1/2,6=0,38 ,
К об.=∆Р/∆М=2/5=0,4
На основании отклонения τ/Т=0,38 принимается регулятор непрерывного действия.
По графикам характеризующим процесс выбора закона управления по динамическим параметрам определяем динамический коэффициент Rд который характеризует степень воздействия регулятора на стабилизацию технологического параметра.
При τ/Т=0,38 по таблицам определяем Rд и рассчитываем расчётное время регулирования.
Расчётное время регулирования не превышает требуемого времени, следовательно для данного объекта управления применяется пропорционально-интегральный закон управления имеющий Rд =0,54 и tp/ τ =8 (с) т.к он обеспечивает оптимальное время 10 сек.
Расчет параметров настройки Кр,Ти по приближённым формулам
Кр = 0,6*Т/Коб* τ =0,6*2,6/0,4*1 =3,9,
Ти=0,8* τ+0,5*Т=0,8*1+0,5*2,6=2,1
Кр,Ти проверяется по графическим зависимостям
Кр=Кс/Коб =1,4/0,4 =3,5,
Ти=(Ти/ τ)* τ=2,3*1=2,3