Средняя температура дистиллята в корпусе:
tд.ср=tв.ср+
tср=35+26,81=61,81°С.Тепловой баланс охладителя конденсата [14,с.18]:
Qохл=GдCд(t/д- t//д)= GвCв(t/в- t/в),(3.5.3.1)
где Gд - расход дистиллята;
Cд - удельная теплоёмкость дистиллята, Cд =4180Дж/(кг*К);
Gв - расход охлаждающей воды;
Cв - удельная теплоёмкость воды,
Св=4174Дж/(кг*К);
Qохл=1,335 *4180(104-50)=301336 Вт.
Расход охлаждающей воды:
Определим коэффициент теплопередачи графоаналитическим методом. По формуле Нуссельта среднее значение коэффициента теплоотдачи для дистиллята: примем Н=4м;
Поверхностная плотность теплового потока от дистиллята к стенке
Вт/м2.Охладитель выполнен из стали 12Х18Н10Т с
=26,ЗВт/(м*К), dн/dвн=25/21мм, толщина стенки 2мм. Для накипи примем значения 2 Вт/(м*К) и 0,2мм.Поверхностная плотность теплового потока через стенку трубы:
Поверхностная плотность теплового потока через накипь:
Поверхностная плотность теплового потока от стенки к воде:
Вт/м2,для вертикальных труб
=0,627Вт/(м*К); = 1,5м/с - принятая скорость в трубах; =0,732* 10-6 м2/с - кинематическая вязкость воды при tв=35°С; 104<Rе<106, движение турбулентное; (3.5.3.2)где Prв=4,87;
=1 - поправка, учитывающая отношение l/d трубки. 6590 Вт/(м2К).Графически определяем при
=26,81°С q=22306 Вт/м2.Коэффициент теплопередачи охладителя:
Площадь поверхности теплообмена:
3.6 Анализ теплотехнических расчетов
В настоящее время для очистки трапных вод с энергоблоков 1-4 на Балаковской АЭС применяются три выпарные установки: две в работе, одна в резерве.
Фактические поверхности теплопередачи выпарного аппарата и доупаривателя составляют:
Fф.ВА= 160*3=480 м2Fф.ДУ=20*3=75 м2
Расчетные поверхности теплопередачи выпарного аппарата и доупаривателя составляют:
Fр.ВА=131,22*3=393,66 м2Fр.ДУ=13,18*3=39,54м2
Проведенные расчеты показывают, что при переработке трапных вод с шести энергоблоков АЭС запас площади поверхности теплопередачи составит:
FВА= Fф.ВА - Fр.ВА=480-393,66=86,34м2(18%) FДУ= Fф.ДУ - Fр.ДУ=75-39,54=35,46м2 (47,3%)Аналогично для конденсатора-дегазатора:
Fф.К=50,3*3=150,9 м2Fр.К=35,99*3=107,97 м2
FК= Fф.К - Fр.К=150,9-107,97=42,93м2 (28,4%)Fф.И=0,55*3=1,65 м2Fр.И=0,53*3=1,59 м2
FИ= Fф.И - Fр.И=1,65-1,59=0,06 м2 (3,64%)Для дефлегматора сдувок:
Fф.ДФ=5*3=15 м2Fр.ДФ=4,26*3=12,78 м2
FДФ= Fф.ДФ - Fр.ДФ=15-12,78=2,22м2 (14,8%)Для охладителя конденсата:
Fф.охл=20*3=60 м2Fр.охл=13,5*3=40,5 м2
Fохл= Fф.охл- Fр.охл=60-40,5=19,5м2 (32,5%)Следовательно, действующая в настоящее время установка обеспечит выпаривание трапных вод с шести энергоблоков Балаковской АЭС со значительным запасом площади поверхности теплопередачи.4 КИП и автоматизация
Автоматические системы управления технологическими процессами обеспечивают оптимальные условия эксплуатации оборудования в предпусковой период, при пуске, эксплуатации и останове энергоблока, удобство обслуживания и повышают безопасность работы энергоблоков АЭС.
Требования, предъявляемые к приборам и средствам автоматизации на установке спецводоочистки трапных вод АЭС, в первую очередь определяются свойствами агрессивных сред, параметры которых измеряются. Необходимо учитывать температуру и концентрацию веществ, вызывающих коррозию, радиоактивность, влажность помещения, наличие пыли. Влияние концентрации и температуры сред учитывается при выборе соответствующих материалов для датчиков (например, чехлы термометров, диафрагмы, расходомеров, соприкасающихся со средой).
Чтобы избежать коррозии щитовых средств контроля и автоматизации, а также сохранить эксплуатационные характеристики в условиях запыленности и загрязненности атмосферы производственных помещений, необходима максимальная централизация их с очисткой и кондиционированием воздуха, подаваемого в диспетчерские пункты.
Для снижения расхода средств на автоматизацию в проекте предлагается использование приборов ГСП (Государственной системы приборов), что позволит реализовать принцип взаимозаменяемости приборов, их централизацию (меньшее количество диспетчерских пунктов). Кроме того, это повысит безопасность обслуживания оборудования.
Для удобства работы щиты приборов снабжены мнемосхемой.
На установке СВО трапных вод заложены в проекте следующие системы автоматизации и контроля:
1. Для измерения уровня вод в выпарном аппарате, доупаривателе, конденсаторе-дегазаторе применяются фотоэлектрические датчики уровнятипа СУФ-42 в комплекте с реле и сигнальным устройством, пьезометрической трубкой, манометром сильфонным с выходным сигналом 0,2-1кгс/см2.
Вторичные приборы - пневматические ПВ 10.1.Э (к датчикам с пневматическим выходом).
Регулятор пропорциональный ПР 1.5.
2.Давление в трубопроводах, аппаратах измеряется и контролируется с помощью манометров пружинных общего назначения ОБМ1-160 с диапазонами измерения 0-1кгс/см2, 0-6кгс/см2.
Вторичный прибор - потенциометр автоматический показывающий, самопишущий с изодромным регулятором типа КСП-3 с выходным сигналом 0,2-1кгс/см2.
3. В качестве датчика для измерения расхода воды используется дифманометр сильфонный показывающий, выходной сигнал 5мА, тип ДСП-786И.
Вторичные приборы типа ПВ4.2Э.
Регуляторы: ПР3.21 - приборы пневматической ветви ГСП, Б412 - блок управления аналогового регулятора.
В качестве регулирующей арматуры используются регулирующие клапаны с пневматическим исполнительным мембранным механизмом типа 25с48нж; для газов и воздуха - поворотные регулирующие заслонки типа СИУ ряда 101 с пневматическим следящим поршневым приводом ПСП-Т1.
4.Измерение температуры и регулирование подачи вод.
В выпарном аппарате и доупаривателе производится регулирование подачи трапных вод по температурной депрессии.
В качестве датчика использован термопреобразователь сопротивления медный типа ТСМ-6097, градуировка 23.
Вторичный прибор - мост автоматический показывающий, самопишущий типа КСМ-3, выходной сигнал 0,2-1кгс/см2. Регулятор пропорциональный типа ПР 1.5.
5.Измерение концентрации упаренного раствора производится плотномером жидкости типа ПЖР-5 с радиоизотопными излучателями, диапазон измерения 0,1-2г/см3. [16,17,18]
Таблица 4.1
Перечень КИП и А выпарной установки
Позиция | Наименование | Кол-во, шт. | Тип |
1-1,2-1,3-1, 4-1,5-1,7-1, 9-1 | Манометр пружинный | 14 | ОБМ1-160 |
5-2,7-2,9-2, 5-3,7-3,9-3 | Прибор вторичный - потенциометр с изодромным регулятором | 9 | КСП-3 |
11-1,13-1, 15-1,17-1 | Датчик уровня | 12 | СУФ-42 |
11-2,13-2, 15-2,17-2 | Прибор вторичный | 12 | ПВ 10.1.Э |
11-3,13-3, 15-3,17-3 | Регулятор пропорциональный | 12 | ПР1.5 |
19-1 | Дифманометр | 3 | ДСП-786И |
19-2 | Прибор вторичный пневматический | 3 | ПВ 4.2.Э |
19-3 | Прибор регулирующий | 3 | ПР3.21 |
21-1,23-1 | Термопреобразователь сопротивления | 6 | ТСМ 6097 |
21-2,23-2 | Компенсационный автоматический прибор | 6 | КСМ-3 |
21-3,23-3 | Прибор регулирующий | 6 | ПР1.5 |
25-1 | Плотномер | 3 | ПЖР-5 |
Заключение
В курсовом проекте проведены теплотехнологические расчеты выпарной установки СВО-3 для очистки радиоактивных сточных вод Балаковской АЭС, определены параметры и конструктивные характеристики оборудования установки; разработана схема автоматизации, выбраны приборы и регуляторы; определены ожидаемые технико-экономические показатели.