Курсова робота
з дисципліни Автоматизация технологических процессов
на тему: "АСР редукционной установки по давлению пара"
2010Курсовой проект содержит: стр. __, рисунков __, таблиц __, приложений __
Ключевые слова: Математическая модель, Редукционная установка.
Объектом исследования является Редукционная установка
Цель проекта: Разработка математической модели.
В процессе работы была разработана математическая модель, проведен анализ статических и динамических характеристик объекта, произведен расчет регулирующего органа для регулирования расхода пара.
Содержание
1. Описание редукционной установки
2. Принципиальная схема включения и регулирования
3. Динамика РУ
4. Разгонные характеристики
Выводы
Литература
Приложения
В схемах энергоблоков для редуцирования давления и снижения температуры пара до заданных параметров применяются редукционно-охладительные установки (РОУ). В редукционных установках (РУ) производится только снижение давления пара с частичным снижением температуры за счет дросселирования.
Пар по трубопроводу через запорную задвижку (1) поступает к регулирующему клапану (2), где и происходит редуцирование давления. Установка снабжена автоматическим регулятором давления.
Этот регулятор поддерживает заданное давление редуцированного пара с точностью ±0,5 кгс/см2. Снижение давления осуществляется в регулирующем клапане с помощью золотника, соединенного с рычагом. Открывается клапан электрический с евромотором электронного регулятора, связанным с рычагом клапана штангой.
На трубопроводе редуцированного пара расположено импульсно-предохранительное устройство, предназначенное для сброса излишков пара в атмосферу при повышении давления в трубопроводе выше допустимого.
Рис.1: Схема РУ
Импульсно-предохранительное устройство состоит из импульсного (3) и главного предохранительного (4) клапанов.
Номинальная производительность редукционных установок:
РУ-14/6-54 т/ч;
РУ-14/3-20 т/ч.
Таблица 1: Состав редукционных установок
РУ-14/6 | РУ-14/3 | |||
Ду, мм | Ру, кгс/см2 | Ду, мм | Ру, кгс/см2 | |
Задвижка с цилиндрическим редуктором | 300 | 64 | 150 | 64 |
Клапан регулирующий поворотный | 300 | 64 | 150 | 64 |
Клапан предохранительный | 300 | 10 | 250 | 25 |
Клапан импульсивный | 20 | 40 | 20 | 40 |
Задвижка Ду 300, серия 2с 26
Изготовитель - ПО "Сибэнергомаш".
Задвижка с приводной головкой, снабженной цилиндрическим зубчатым редуктором. Приводная головка имеет маховик для ручного управления и шарнирную муфту для присоединения дистанционного привода.
Задвижка состоит из следующих основных узлов и деталей: корпуса с приварными седлами, крышки с бугелем, затвора, шпинделя,
узла сальникового уплотнения шпинделя, приводной головки.
Корпус и крышка с бугелем изготовлены из литых заготовок углеродистой стали. Соединение корпуса с крышкой фланцевое. Уплотнение соединения осуществляется с помощью металлической рифленой прокладки.
Затвор задвижки клиновой, двухдисковый, с распорным элементом. Соединение дисков (тарелок) с обоймой при помощи тарелкодержателей. Распорный элемент выполнен в виде грибка, один из концов которого плоский, а другой - в виде полусферы. Такая конструкция распорного элемента обеспечивает самоустановку тарелок относительно седел. Компенсация неточности изготовления, определение взаимного положения затвора и седел обеспечивается за счет прокладки.
Приводная головка расположена в верхней части бугеля и состоит из стальной втулки, соединенной с приводом, двух упорных подшипников, резьбовой втулки, взаимодействующей со шпинделем.
Присоединение задвижки к трубопроводу сварное.
Материалы основных деталей задвижки:
крышки и корпуса - сталь 25Л;
шпинделя - сталь 35;
сальниковой набивки - прессованные асбографитовые кольца;
тарелки - сталь 38ХМЮА с твердым азотированием;
седла - сталь 20 с наплавкой уплотнительных поверхностей.
Рисунок представлен в приложении 1.
Регулирующий клапан Ду 150, 300, серия 6с-8.
Представлен на рисунке в приложении 2.
Изготовитель - ПО "Сибэнергомаш".
Основные детали регулирующего поворотно-золотникового клапана:
Главный предохранительный клапан
Представлен на рисунке в приложении 3.
Таблица 2: Технические х-ки главных предохранительных клапанов
Главный и импульсный клапаны ИПУ устанавливаются только на горизонтальных участках трубопроводов в строго вертикальном положении, в местах, удобных для обслуживания. Направление потока рабочей среды в ГПК - на тарелку (прижимает к седлу), в ИК - под тарелку (отжимает от седла).
Действует импульсно-предохранительное устройство следующим образом. При повышении давления в паропроводе выше допустимого открывается ИК. Это открывает доступ пара из импульсного клапана через соединительный трубопровод 25x3 в главный предохранительный клапан. Пар попадает в надпоршневое пространство сервопривода ГПК. Площадь поршня сервопривода превышает площадь тарелки, на которую воздействует давление пара, стремящееся закрыть клапан. Усилие, действующее на поршень сверху, преодолевает усилие, действующее на тарелку снизу. Вследствие этого в системе "поршень-тарелка" возникает перестановочное усилие, направленное вниз, и главный клапан открывается.
Когда давление пара в трубопроводе понижается, ИК закрывает доступ пара в надпоршневое пространство ГПК. Оставшийся в надпоршневом пространстве пар через зазоры между штоком и втулкой предохранительного и импульсного клапанов выходит в атмосферу. Давление над поршнем сервопривода ГПК падает, и под действием пружины и давления пара на тарелку со стороны трубопровода ГПК также закрывается.
С целью предотвращения непроизвольного срабатывания ГПК (в случае неплотности затвора ИК) в крышке ГПК выполнен штуцер, соединяющий надпоршневую полость с выхлопным трубопроводом ГПК. С помощью этой системы утечка через затвор удаляется в атмосферу.
Редукционно-охладительные установки (РОУ) предназначены для снижения давления и температуры пара (обычно острого, отводимого из основного паропровода). Снижение давления осуществляется с помощью дроссельного регулирующего клапана, а температуры - впрыском охлаждающей воды. Давление и температура редуцированного пара определяются назначением и требованиями потребителя пара.
На ТЭС ГОУ применяются для резервирования теплофикационных отборов, собственных нужд, подогрева мазута.
На АЭС ГОУ применяются для подачи пара на уплотнения турбины, к эжекторам и пароэжекторным машинам.
Точность поддержания давления и температуры редуцированного пара диктуется потребителем. Обычно точность поддержания давления пара составляет ± 2%, температуры - 1,5%.
Схема подключения РОУ изображена на рис.7.1. Свежий пар поступает к дроссельному клапану 2 через входную задвижку 1, дросселируется сначала в дроссельном клапане, а затем в шумоглушителе 3. Последние применяются при околозвуковом или сверхзвуковом перепаде давления.
Охлаждающая вода поступает через водяную задвижку 4 и регулирующий клапан 6 на форсунку 8. Часто перед дроссельным клапаном 6 устанавливается дроссельное устройство в виде дроссельной шайбы 5 или группы шайб. Это делается в тех случаях, когда охлаждающая вода подается к РОУ от источника с высоким давлением (например, от питательного насоса), значительно превышающим давление, необходимое для впрыска воды.
Дроссельное устройство рассчитывается на пропуск такого количества воды, которое необходимо для охлаждения максимально возможного расхода пара. Для предотвращения опасного повышения давления дросселированиого пара на выходном паропроводе устанавливается предохранительное устройство 10, На охладителе пара 9 соосно с его корпусом обычно устанавливается защитная труба, предназначенная для уменьшения вредного воздействия воды на стенку охладителя пара.
Как объект регулирования РОУ имеет две регулируемые величины: давление и температура пара за РОУ.
Основным возмущающим воздействием на давление пара является изменение его потребления или давления свежего пара. Возмущающим
воздействиям на температуру пара являются изменения потребления пара расход и давление свежего пара.
Рис.3: Принципиальная схема включения и регулирования
Регулирующим воздействием на давление пара является изменение расхода свежего пара, а на температуру - изменение расхода охлаждающей воды. Как объект регулирования давления РОУ обладает самовыравниванием, и ее динамику можно описать уравнением инерционного звена первого порядка.
Iкак объект регулирования температуры РОУ можно считать безынерционным
\ объектом, однако, так как температура измеряется инерционным датчиком, то инерционность РОУ определяется инерционностью датчика.
Регулирование давления осуществляется регулятором 11, получающим импульс от манометра 12 и воздействующим на клапан 2.
Температура редуцированного пара регулируется регулятором 14,| получающим импульс от термопреобразователя 13 и воздействующим на клапан 6. Для повышения точности измерения температуры
Iтермопреобразователь должен устанавливаться на расстоянии 8-10 м после впрыска, чтобы влага успела полностью испариться. Иногда для сохранения Постоянного перепада давления на клапане 6 в широком диапазоне изменения расходов впрыска в качестве клапана 6 применяется трехходовой клапан постоянного расхода. Такой клапан обеспечивает изменение подачи воды в пароохладитель путем сброса ее в сливную линию 7 при неизменном расходе воды через дроссель 5.