Области применения весьма широки. Практически ни одно технологически сложное производство не обходится без применения вакуума.
В электронной технике: осветительные лампы, газоразрядные, генераторные и сверхвысокочастотные приборы, телевизионные и рентгеновские трубки.
В производстве микросхем и приборов: нанесение тонких плёнок, ионное внедрение, плазмохимическое травление, электронолитографию.
В металлургии: плавка и переплав металлов в вакууме освобождает их от растворённых газов, что придаёт им высокую прочность, пластичность и вязкость.
Машиностроение: электроннолучевая сварка, диффузионная сварка, плазменная обработка.
Химическая промышленность: вакуумные сушильные аппараты, вакуумная пропитка, вакуумные фильтры.
Основной инструмент современной ядерной физики – ускоритель частиц – немыслим без вакуума. Поддержание почти космического вакуума требуется в установках для проведения экспериментов.
Все вакуумные насосы можно разделить на высоковакуумные и низковакуумные, а по физическому принципу действия – на механические, сорбционные, ионные. Среди механических насосов выделяют объёмные и молекулярные, основанные на передаче количества движения молекулам газа от движущихся поверхностей.
Насосы объёмного типа осуществляют откачку за счёт периодического изменения объёма рабочей камеры. Этот тип вакуумных насосов появился раньше остальных и получил широкое применение в различных конструкциях: поршневая, жидкостно-кольцевая и ротационная.
Среди насосов с передачей количества движения молекулам газа различают: водоструйные, эжекторные, диффузионные и молекулярные. Их характеристики можно рассчитать на основании закономерностей внутреннего трения в газах.
Сорбционные явления в вакууме широко используются для откачки газов из вакуумных систем. На принципе хемосорбции основана работа испарительных насосов. Физическая адсорбция и конденсация используются для откачки газов криосорбционными насосами: адсорбционными и конденсационными.
Направленное движение предварительно заряженных молекул газа под действием электрического поля является основой работы ионных насосов. Принцип ионной откачки совместно с сорбционным используется в конструкциях ионно-сорбционных насосов.
Основными параметрами любого вакуумного насоса являются: быстрота действия, предельное давление, наименьшее рабочее давление, наибольшее давление запуска и наибольшее выпускное давление.
Si = dVi/dt.
Быстротой откачки объекта или эффективной быстротой откачки насоса называется объём газа, поступающий в единицу времени из откачиваемого объекта в трубопровод через сечение I при давлении p1:
SEff = dV1/dt (1)
Быстрота действия насоса – это объём газа, удаляемый насосом в единицу времени через входной патрубок (сечение ближе к насосу) при давлении p2:
SH = dV2/dt (2)
Отношение эффективной быстроты откачки насоса к быстроте действия называется коэффициентом использования насоса:
Ku = SEff/SH (3)
Производительностью насоса называется поток газа, проходящий через его входное сечение. Для стационарного потока выполняется условия сплошности:
Q = p2SH = p1SEff = piSi (4)
Установим связь между тремя основными характеристиками вакуумной системы: быстротой действия насоса SH, эффективной быстротой откачки объекта SEff и проводимостью вакуумной системы между насосом и откачиваемым объектом U. Запишем следующие равенства:
SH= Q/p2=U(p1-p2)/p2,
SEff = Q/p1 = U(p1 - p2)/p1 (5)
После несложных преобразований имеем искомую связь:
1/SEff -1/SH = 1/U (6)
Это уравнение называется основным уравнением вакуумной техники. Для анализа этого уравнения запишем его немного в другом виде:
SEff = SHU/(SH + U) (7)
Сразу же бросаются в глаза следующие факты:
1. Если SH = U, то получаем что SEff = 0.5SH;
2. Если U
, то SEff SH;3. При U
0, имеем SEff 0.Предельное давление насоса pпр - это минимальное давление, которое может обеспечить насос, работая без откачиваемого объекта. Логично заметить, что быстрота действия насоса при приближении к предельному давлению стремиться к нулю. Предельное давление большинства вакуумных насосов определяется газовыделением материалов, из которых изготовлен насос, перетеканием газов через зазоры и другими явлениями, возникающими в процессе откачки.
Наименьшее рабочее давление вакуумного насоса pм - это минимальное давление, при котором давление длительное время сохраняет номинальную быстроту действия. Наименьшее рабочее давление примерно не порядок выше предельного давления. Использование насоса для работы при давлениях между предельным и наименьшим рабочим экономически не выгодно из-за ухудшения его удельных характеристик.
Наибольшее рабочее давление вакуумного насоса pб - это максимальное давление, при котором насос длительное время сохраняет номинальную быстроту действия. В рабочем диапазоне от наименьшего о наибольшего рабочего давления обеспечивается эффективное применение насоса для откачивания вакуумных установок. Рабочие диапазоны давлений вакуумных насосов в основном определяются их принципом действия.
Давление запуска вакуумного насоса pз - максимальное давление во входном сечении насоса, при котором он может начать работу. Давление запуска обычно заметно превышает наибольшее рабочее давление. Для некоторых типов насосов, к примеру, магниторазрядных, это различие может достигать 2-3 порядков
Рис.2 Зависимость быстроты действия от входного давления.
Наибольшее выпускное давление pВ - максимальное давление в выходном сечении насосы, при котором он может осуществлять откачку. Этот параметр не используется для некоторых типов сорбционных насосов, поглощающих газ в объёме насоса.
Параметры вакуумных насосов показаны на основной характеристике вакуумного насоса – зависимости быстроты действия от его входного давления (рис. 2). Экспериментальное определение основной характеристики вакуумного насоса может осуществляться двумя методами: стационарным методом постоянного давления и квазистационарным методом постоянного объёма.
В поршневых вакуумных насосах откачка осуществляется за счет периодического изменения объема цилиндра. Цилиндры могут быть простого и двойного действия с водяным или воздушным охлаждением. Скорость движения поршня обычно не превышает 1 м/с. Обычные поршневые насосы с самодействующими клапанами имеют предельное давление 4.103 - 1.104 Па. Насосы с золотниковым распределением имеют более низкое предельное давление. 3.102 Па для одноступенчатых и 10 Па для двухступенчатых конструкций. Улучшение предельного давления достигается перепуском газа из мертвого пространства в конце хода поршня во вторую полость цилиндра, в которой заканчивается процесс всасывания. Быстрота действия современных поршневых насосов составляет 10-4000 л/с. Насосы обычно начинают работать от атмосферного давления.