Смекни!
smekni.com

Гидроабразивная обработка. Обработка взрывом (стр. 1 из 3)

Псковский Государственный Политехнический Институт

Реферат

На тему: «Гидроабразивная обработка. Обработка взрывом»

Псков 2010

Содержание

Гидроабразивная обработка

Преимущества технологии гидроабразивной резки

Недостатки данной технологии

Что можно резать с применением гидроабразивной технологии?

Обработка деталей взрывом

Энергоносители

Основные технологические параметры при гидровзрывном формообразовании

Технологическое оборудование при гидровзрывном формообразовании

Производство изделий деформацией взрывом

Вывод

Список литературы


Гидроабразивная обработка

В основе технологии гидроабразивной резки лежит принцип эрозионного воздействия смеси высокоскоростной водяной струи, выступающей в качестве носителя, и твердых абразивных частиц на обрабатываемый материал.

Физическая суть механизма гидроабразивной резки состоит в отрыве и уносе из полости реза частиц разрезаемого материала скоростным потоком твердофазных частиц. Устойчивость истечения и эффективность воздействия двухфазной струи обеспечиваются оптимальным выбором целого ряда параметров резки, включая давление и расход подаваемой воды, а также расход и размер частиц абразивного материала

Практически данный принцип реализуется следующим образом

В установке гидроабразивной резки вода под давлением порядка 4000 атмосфер, создаваемым насосом высокого давления, подается в сопло с профилированным каналом, в котором формируется высокоскоростная водная струя.

Затем водная струя попадает в смесительную камеру режущей головки, где она захватывает поступающие туда абразивные частицы, в результате чего образуется водоабразивная смесь. Далее полученная смесь разгоняется в смесительной трубке (диаметром около 1 мм) до сверхзвуковой скорости (порядка 900-1200 м/с).

Эта высокоскоростная водоабразивная струя и используется в качестве универсального режущего инструмента. После резки материала остаточная энергия струи гасится специальной водяной ловушкой.

Режущая головка устанавливается на устройстве позиционирования координатного стола и может перемещаться при помощи электроприводов по трем координатам с рабочими ходами, обусловленными габаритами координатного стола.

Гидроабразивная обработка является не только альтернативой механической, лазерной, ультразвуковой и плазменной резке, но и в некоторых случаях (резка многослойных, сотовых и композиционных материалов, керамики) единственно возможной.

Гидроабразивная резка особенно эффективна при резке многих труднообрабатываемых материалов: титановых сплавов, различных видов высокопрочных керамик и сталей, а также композитных материалов. При их гидроабразивной резке не создается разрывов в структуре материала, который, таким образом, сохраняет свои первоначальные свойства.

Гидроабразивная струя не изменяет физико-механические свойства материала и исключает деформацию, оплавление и пригорание материала.

Преимущества технологии гидроабразивной резки:

Универсальность

Возможность использования одной и той же установки для резки широкого спектра материалов, без смены или переналадки режущего инструмента.

Диапазон толщин разрезаемых материалов от 0,1 до 300 мм.

Низкая температура в зоне реза 60-90ºС

Образующееся в процессе резания тепло практически сразу уносится водой. В результате не происходит заметного повышения температуры заготовки, что обеспечивает по сути «холодный» рез всех материалов. Это позволяет при использовании гидроабразивной технологии: исключить оплавление и пригорание материала в прилегающей зоне;

· исключить выгорание легирующих элементов в легированных сталях и сплавах;

· исключить появление разрывов в структуре материала и ухудшение первоначальных свойств материала;

· исключить температурную деформацию заготовки;

· исключить необходимость дополнительной механической обработки поверхности реза заготовки, вследствие чего повысить производительность и уменьшить себестоимость изготовления деталей.

Высокая точность резки Резка по контуру любой сложности

При гидроабразивной обработке можно воспроизводить контуры любой сложности. Струя жидкости по своим техническим возможностям приближается к идеальному точечному инструменту, что позволяет обрабатывать профиль любой сложности с заданным радиусом закругления, поскольку ширина реза составляет от 1 до 1,5 мм.

Хорошее качество поверхности реза

Условно шероховатость получаемой на установках гидроабразивной резки поверхности реза можно разделить на три категории качества поверхности реза, которые примерно можно соотнести со следующими величинам шероховатости: отличное – Ra 5 - Rz 20; хорошее – Rz 60-120; удовлетворительное – Rz 260-320.

При необходимости возможно получения финишной поверхности с шероховатостью Ra 1,5-2,5 мкм при соответствующем подборе технологических параметров установки и скорости реза, что позволяет применять технологию гидроабразивной резки не только в заготовительном производстве, но и для чистовой резки деталей.

Экономичность процесса

Технология гидроабразивной резки наряду с достаточно высокой скоростью резки широкого диапазона толщин различных материалов позволяет дополнительно повысить производительность за счет:

· сокращения количества либо полного исключения сопутствующих технологических операций (предварительное сверление отверстий, смена или переналадка режущего инструмента, последующая механическая обработка детали);

· экономии времени на механическое закрепление заготовки на координатном столе;

· уменьшения времени холостого хода режущей головки, вследствие возможности резки тонколистовых материалов в многослойном пакете.

Кроме всего вышеперечисленного, использование гидроабразивной технологии позволяет значительно уменьшить потери материала при резке, как за счет малой ширины реза, так и за счет сокращения припусков на дополнительную мехобработку.

Экологическая чистота и полное отсутствие вредных газовыделений

Для осуществления процесса гидроабразивной резки не требуется никаких газов, а низкая температура реза не вызывает выделения вредных газов из материалов, подвергающихся резке.

Используемый в качестве абразивного материала гранатовый песок безвреден для здоровья операторов, поскольку не вызывает профессиональных заболеваний, и отходы его могут быть использованы в как в строительных растворах, так и для других целей.

Полная пожаро- и взрывобезопасность

Поскольку при гидроабразивной резке нет накапливаемого тепла и отсутствуют какие-либо газы, технология является взрыво- и пожаробезопасной. Это позволяет осуществлять рез даже взрывчатых веществ, например, при утилизации боеприпасов.

Недостатки данной технологии

· Недостаточно высокая скорость реза тонколистовой стали;

· Ограниченный ресурс отдельных комплектующих и режущей головки.

· Невозможность повторного использования абразивного материала.

Что можно резать с применением гидроабразивной технологии?

При помощи гидроабразивной струи резать можно практически любые материалы:

· черные металлы и сплавы;

· труднообрабатываемые легированные стали и сплавы (в том числе: жаропрочные и нержавеющие);

· цветные металлы и сплавы (медь, никель, алюминий, магний, титан и их сплавы);

· композиционные материалы;

· керамические материалы (керамогранит, плитка);

· природные и искусственные камни (гранит, мрамор и т. д.);

· стекло и композиционное стекло (триплекс, бронестекло, армированное стекло, стеклотекстолит и т. п.);

· пористые и прозрачные материалы;

· сотовые и сэндвич-конструкции;

· бетон и железобетон.

Резка мягких материалов, таких как полиуретан, поролон и другие пеноматериалы, пластмассы, кожаные изделия, картон, ткани и т. п. осуществляется только струей воды без добавления абразива. Применяется также и в пищевой сфере, для порезки и порционирования пищевых продуктов.


Обработка деталей взрывом

Взрывная обработка – способ механической обработки металлов (сварки, штамповки, упрочнения), основанный на использовании энергии взрыва.

При сварке взрывом происходит соударение деталей и образуется кумулятивная струя металла, сваривающая детали. Штамповка заключается в мгновенном (мс,мкс) приложении к листовой заготовке механических напряжений, значительно превышающих предел упругости материала.

Формообразование взрывом получило достаточно широкое распространение в различных областях машиностроения как в нашей стране, так и за рубежом. Это один из первых, наиболее исследованных методов высокоскоростного деформирования материалов (впервые чеканка железа осуществлена в 1888г, а промышленное использование метода началось с 1950г.). Обладая высокой удельной и общей энергоемкостью и эффективностью взрывчатые вещества (ВВ) позволяют деформировать (и сваривать) детали больших габаритов из высокопрочных материалов с высокой точностью. Этим методом изготавливаются детали различной конфигурации и размеров из плоских и фасонных листовых заготовок. Такой метод по сравнению с процессами листовой штамповки на прессах характеризуется следующими преимуществами: упрощенной конструкцией оснастки, возможностью формовки крупногабаритных деталей из высокопрочных сталей и сплавов.

Наиболее широкое применение в производстве получил метод штамповки взрывом с использованием воды как среды для передачи давления от заряда взрывчатого вещества к заготовке (гидровзрывное формообразование). Типичная схема представлена на рис. 3.1

Метод заключается в том, что штампуемую заготовку 1 укладывают на матрицу 2 и прижимают с помощью прижимного кольца 3. На определенном расстоянии над заготовкой помещают заряд ВВ 5. Матрицу с заготовкой и зарядом опускают в бассейн 5 с водой 6. Часть энергии, высвобождаемой при взрыве заряда, передается через воду заготовке, которая деформируется, принимая форму поверхности 7 матрицы 2. Чтобы воздух под заготовкой не препятствовал ее перемещению, происходящему с большой скоростью, полость матрицы под заготовкой вакуумируют с помощью специальной системы через отверстие 8.