Смекни!
smekni.com

Дефекты рельсовой стали (стр. 4 из 5)

Склонность стали к образованию камневидного излома предопределяет содержание некоторых элементов в стали или их соотношения. В частности, увеличение содержания серы и снижение содержания марганца способствуют образованию камневидного излома. Основной эффект при этом связан с природой сульфидной фазы, поскольку чем ниже температура диссоциации и плавления сульфидов и чем выше их растворимость в аустените, тем ниже температура перегрева, при которой может возникнуть устойчивый камневидный излом. Повышенное содержание в стали марганца (отношения Mn/S > 50) и микролегирование элементами (редкоземельными), образующими высокотемпературные, нерастворимые в аустените сульфиды (FeS с температурой плавления 1190 °С, MnS – 1600 °С, р.з.м. – 1800–2200 °С), снижают склонность стали к образованию камневидного излома [35,43]. Увеличение отношения Mn/S также способствует повышению пластичности стали. Для рельсовой стали текущего производства отношение Mn/S в среднем находится в интервале 70 – 100. Не менее важную роль оказывает нитридная фаза, в частности, увеличение содержания в стали нитридов алюминия способствует образованию камневидного излома, а образование нерастворимых нитридов титана препятствует его возникновению. Отрицательная роль легкорастворимых карбидов ванадия по данным начинает проявляться только при содержании ванадия в стали более 0,15%, а также замедленном охлаждении заготовок в интервале температур 900 – 1100 °С.

Причиной перегрева служит превышение допустимой температуры нагрева, а также чрезмерно длительный нагрев в области высоких температур. Перегрев стали исправляют пластической деформацией, но если температура металла в конце прокатки будет достаточно высокой, то в готовом прокате это может привести к снижению ударной вязкости.

Из-за снижения при перегреве пластичности стали при прокатке возможно образование крупных трещин и рванин, особенно по углам, кромкам и концам раската (рисунок 1.8). Рванины перегретой стали обычно имеют вытянутую форму без резких очертаний. О перегреве металла свидетельствует также наличие в структуре металла «точек» перегрева, характеризующихся присутствием точечного неметаллического включения и оторочки – в виде светлой структурной составляющей (рисунок 1.9).

В целях предотвращения образования перегрева конечная температура нагрева рельсовой стали не должна превышать допустимых значений. Для стали с содержанием углерода 0,71 – 0,82% она составляет 1190–1200 °С. Температура перегрева составляет 1160–1200 °С.

1.5 Пережог

Пережог металла возникает при более высоких температурах нагрева, чем перегрев, и является неустранимым видом брака. Явления пережога протекают в области околосолидусных температур, при которых возникает высокотемпературная хрупкость стали, характеризуемая резким снижением прочностных и пластических свойств, приводящая к образованию грубых рванин при прокатке (рисунок 1.10). Температурный интервал вязко-хрупкого перехода составляет всего 10 °С. При механическом воздействии, в том числе и деформации, разрушение происходит по границам аустенитных зерен.

Для прогноза температуры вязко-хрупкого перехода (tВХП) сталей с содержанием элементов (массовые доли, %): 0,01 – 1,90 С, 0,001 – 0,042 S, 0,001 – 0,040 Р, 0,34 – 1,93 Мn, 0,01 – 1,00 Si предложено соотношение

TВХП = 1479 – 169 С – 547 S – 199 Р – 8 Мп – 6 Si. (1.12)

Как видно из соотношения 1.12, наиболее сильное влияние на температуру вязко-хрупкого перехода оказывают сера, фосфор и углерод, соответственно наиболее вероятные участки высокотемпературного охрупчивания стали – ликвационные области. Для рельсовой стали марок Э76Ф и К76Ф текущего производства температуры вязко-хрупкого перехода составляют в среднем 1320–1340 °С, а марок К86Ф и Э86 Ф – 1305–1325 °С.

Предвестником вероятности перегрева и пережога НЛЗ рельсовой стали при нагреве под прокатку является оплавление окалины, поскольку температура плавления окалины примерно соответствует температуре вязко-хрупкого перехода. Однако сам факт оплавления окалины не является адекватным подтверждением перегрева и пережога стали, поскольку при нагреве температура окалины всегда выше температуры металла, процессы окисления границ зерен носят диффузионный характер и для их развития требуется определенный временной интервал. Таким образом, форсированный нагрев НЛЗ до оплавления окалины без выдержек (томления) металла, как правило, не приводит к ухудшению структуры и свойств стали. В то же время пластическая деформация металла при температурах вязко-хрупкого перехода может сопровождаться образованием рванин, вызванных не окислением границ зерен, а снижением их прочности, переходом стали в твердо-жидкое состояние. Наибольшая вероятность образования рванин существует для углов и торцов НЛЗ, имеющих, как правило, более высокую температуру при нагреве, чем середина грани.

На поверхности металла при перегреве и пережоге иногда образуется другой вид дефекта, называемый сеткой разгара («чешуйчатостъ»), связанный с образованием большого количества тонких и мелких надрывов (рисунок 1.11). На микрошлифах по месту надрывов наблюдаются оксиды, проходящие по границам зерен.

Пережог металла имеет зерногранично-окисленный излом. Он представляет собой поверхность разрушения темно-серого (близкого к черному) цвета, проходящую по границам окисленных или оплавленных зерен с ослабленной связью между собой (рисунки 1.12, 1.13).

На микрошлифах начальная стадия пережога идентифицируется в виде утолщений границ зерен. При пережоге происходит окисление границ аустенитных зерен с оплавлением легкоплавких выделений (сульфидов, нитридов) по границам.

1.6 Недогрев

Недогрев – дефект нагрева, проявляющийся в пониженной температуре нагрева НЛЗ в методической печи. Недогрев приводит к повышенным усилиям при прокатке, более интенсивному износу валков, снижению пластичности металла, недопустимо низкой конечной температуре прокатки.

1.7 Непрогрев

Непрогрев (высокая неравномерность нагрева по толщине, периметру и длине НЛЗ) – дефект, связанный с высокой неравномерностью нагрева. Неравномерность температур по толщине НЛЗ в соответствии с рекомендациями должна составлять 1 – 3 К/см, т.е. 30 – 90 °С. При производстве рельсов из НЛЗ весьма важен хороший прогрев осевых слоев заготовки, обеспечивающий наиболее благоприятные условия для сваривания внутренних дефектов структуры (пор, микротрещин, осевой рыхлости), уплотнения и проработки металла. В связи с этим рекомендуемая неравномерность нагрева по толщине НЛЗ должна составлять 20 -25 °С.

Неравномерность нагрева по длине и периметру НЛЗ может стать причиной разнотолщинности проката, искажений геометрии рельсового профиля.


2. Дефекты прокатки

2.1 Деформационная рванина

Деформационная рванина – поверхностный дефект в виде раскрытого разрыва, расположенного поперек или под углом к направлению наибольшей вытяжки металла при прокатке. Деформационные рванины образуются вследствие пониженной пластичности стали. При соблюдении технологии выплавки, разливки и нагрева рельсовая сталь обладает достаточно высокой пластичностью в широком температурном интервале и для нее не характерны различные виды пониженной пластичности.

Снижение пластичности, как правило, вызвано несоблюдением температурного режима нагрева и прокатки, явлениями перегрева, пережога, недогрева стали (рассмотрены выше) или чрезмерного охлаждения (подстуживания) раската в процессе деформации.

При прокатке рельсового профиля деформационные рванины чаще всего образуются в области пера подошвы и боковой грани головки (рисунки 1.14, 1.15).

На микрошлифах по месту рванин наблюдается нарушение сплошности металла произвольной ориентации (рисунок 1.16). В области дефекта может присутствовать вкатанная окалина, следы ликвации элементов отсутствуют.

2.2 Прокатная плена

Прокатная плена – поверхностный дефект, представляющий собой отслоение металла языкообразной формы (рисунок 1.17), одной стороной соединенное с основным металлом. Прокатные плены образуются вслед вие раскатки прокатных рванин, подрезов, следов зачистки дефектов, грубых механических повреждений поверхности или при грубой выработке калибров.

На микрошлифах нижняя поверхность плен обычно окислена, металл под ней покрыт окалиной и обезуглерожен (рисунок 1.18).

2.3 Ус

Ус – поверхностный дефект, представляющий собой продольный выступ с одной или двух противоположных сторон профиля, соответствующим разъемам калибра. Ус имеет значительную протяженность (иногда на всю длину раската), образуется вследствие переполнения калибра, неправильной калибровки и настройки стана, пониженной температуры металла. Резко выраженный двухсторонний ус иногда называют лампасом.

Е.А. Шур применительно к прокатке рельсов определяет лампас как широкий выступ металла на головке рельса вдоль прокатки, а ус как узкий выступ на пере подошвы в местах разъема валков.

Переход уса к поверхности обычно плавный, микроструктура в зоне дефекта соответствует микроструктуре поверхности основного металла. В структуре металла по контуру уса наблюдается аналогичная глубина обезуглероженного слоя, как и по всей наружной поверхности раската.

2.4 Подрез

Подрез – поверхностный дефект в виде продольного углубления, расположенного по всей длине или на отдельных участках поверхности проката. Образование подреза связывают с неправильной настройкой валковой арматуры или одностороннего перекрытия калибра. Дефект может иметь тупое или остроугольное дно.

Металл в области подреза может быть обезуглерожен. Для дефекта характерно наличие вкатанной окалины, следы ликвации элементов отсутствуют (рисунок 1.19).