Рис. 4 Датчик давления, основанный на эффекте Холла
Сущность работы емкостных измерительных преобразователей заключается в изменении под действием измеряемой физической величины их электрической емкости, что, в свою очередь, отражается на величине их входного сигнала.
Электрическая емкость конденсатора, образованного параллельными пластинами, определяется по формуле
С=εoεn(n-1)(A/a)
где n-число пластин; A - площадь одной стороны пластины; d — толщина диэлектрика, расположенного между пластинами; ε0, - относительная диэлектрическая проницаемость этого диэлектрика; εn - диэлектрическая проницаемость вакуума, т.е. вполне определенная константа.
Для измерений смещений менее 1 мм применяют емкостные преобразователи с изменяющимся расстоянием между пластинами. Для измерения смещений, превышающих 1 мм, чаще всего используются преобразователи с изменяющейся площадью перекрытия пластин.
Емкостные преобразователи могут быть использованы как для статических, так и для динамических измерений, но применяются главным образом в стационарных условиях для проведения стендовых исследований и прецизионных измерений физических величин.
Емкостные датчики широко применяются для измерения таких механических величин как вибрации, перемещения, скорости, ускорения, усилия, крутящие моменты и давление.
Распространенным устройством, преобразующим акустические колебания окружающей воздушной среды в соответствующие электрические сигналы, является емкостный микрофон рис. 6.
Рис. 6. Конструктивная схема емкостного микрофона
Конструктивная схема емкостного микрофона, который содержит размещенные в корпусе 1 мембрану 2 из электропроводящего материала, неподвижную пластину 3, установленную на диэлектрике 4, и демпфирующий слой 5. При изменении акустического давления мембрана 2 деформируется и изменяется ее расстояние до пластины 3. В результате происходит изменение электрической емкости микрофона, что и используется.
Различают два случая: когда жидкость, уровень которой измеряется и регулируется, является диэлектриком и когда эта жидкость является проводником.
На рис. 10 изображена конструктивная схема измерения уровня жидкости, являющейся диэлектриком, с помощью емкостного преобразователя.
Рис. 10. Конструктивная схема емкостного измерения уровня жидкости-диэлектрика
Емкостные датчики широко применяются для измерения различных параметров окружающей среды. Одним из самых важных параметров такого рода является давление жидкости или газа.
Оптоэлектроника сочетает в себе оптические и электронные методы измерений. На основе оптоэлектронных преобразователей созданы датчики давления, силы, перемещения, скорости, акустических параметров, напряженности электрического и магнитного полей.
Оптическое излучение представляет собой электромагнитные волны в диапазоне длин волн от 0,001 до 1000 мкм. Этот диапазон длин волн принято делить на три поддиапазона — ультрафиолетовую область, область видимого света и область инфракрасного излучения.
Для описания оптических явлений используются три системы величин: энергетическая, световая и квантовая.
Одночастотный поток называют монохроматическим.
Если волны отдельных излучений, из которых состоит поток, находятся в одной и той же фазе по отношению друг к другу, то такой поток называют когерентным.
Когда световой поток проходит через границу раздела двух сред, то его направление меняется, происходит так называемое преломление света
Существует два основных метода измерения параметров оптического излучения: метод радиометрии и метод фотометрии.
Метод радиометрии позволяет определять энергию оптического излучения путем ее поглощения и преобразования в соответствующем датчике с последующим определением изменения температуры.
Метод фотометрии основан на зрительном ощущении изменений видимого света, и основным чувствительным элементом в этом случае является человеческий глаз.
Естественным источником светового излучения является солнце. Широко применяются лампы накаливания с вольфрамовой нитью.
В настоящее время все более широкое применение получают лазерные источники излучения. Лазеры бывают газовыми, твердотельными и полупроводниковыми. Наибольшее распространение получили газовые лазеры, характеризующиеся монохроматичностью и поляризованностью излучаемого ими когерентного света.
Приемники излучения можно разделить на две группы: интегральные и селективные. К интегральным относятся приемники излучения, базирующиеся на преобразовании энергии излучения в температуру независимо от длины его волны. К селективным относятся фотоэлектрические преобразователи, настраиваемые на ту или иную определенную длину волны излучения. К ним относятся преобразователи, использующие явления внутреннего и внешнего фотоэффекта: фоторезисторы, фотодиоды, вакуумные и газонаполненные фотоэлементы, фотоумножители и т.п.
Существуют приемники излучения, выполненные в виде полоски из двух различных металлов, образующих термопару. Существуют также приемники излучения, выполненные в виде полоски или стержня из металла или полупроводника, который изменяет свое сопротивление в зависимости от температуры (болометр).
В качестве источников света чаще всего используют светодиоды и полупроводниковые лазеры, а в качестве приемников — полупроводниковые фотодиоды.
В основе передачи светового сигнала по оптическому волокну лежит явление полного внутреннего отражения.
Основные конструктивные схемы оптоэлектронных преобразователей
В механообрабатывающем производстве и в соответствующих исследованиях наиболее удобно применять амплитудную модуляцию оптического излучения.
Может быть осуществлена за счет:
• ослабления светового сигнала в среде при изменении коэффициента поглощения;
• изменения поперечного сечения оптического канала;
• генерации дополнительного излучения при воздействии измеряемого физического фактора;
• изменения отражательной или поглощательной способности при изменении показателя преломления или при нарушении полного внутреннего отражения.
В автоматизированном производстве контроль качества обработанной поверхности осуществляется с помощью датчиков шероховатости, принцип действия которых основан на рассеянии светового луча.
Оптические методы довольно широко используются для измерения давлений. Схема приведена на рис. 6. Между светодиодом 7 и двумя фотоприемниками 2 и 3 размещена шторка 4, перекрывающая поток излучения, который падает на один из фотоприемников 2 или 3. Шторка 4 жестко установлена на эластичной мембране 5, воспринимающей измеряемое давление. Для того чтобы произвести перекрытие светового потока между светодиодом 1 и фотоприемниками 2 и 3, достаточно перемещения шторки 4 на доли миллиметра.
Рис. 6. Схема простейшего оптического датчика давления
Общим недостатком названного способа оптического измерения скорости потока является то, что, будучи помещенными в поток жидкости, датчики вызывают возмущения этого потока. Подобных искажений удается избежать, применяя бесконтактные методы измерений, основанные на использовании лазера (применяя так называемые лазерные анемометры).
Суть лазерных методов состоит в том, что луч лазера разделяется в полупрозрачном зеркале на два луча, которые фокусируются в одной точке в пределах прозрачного участка трубопровода. Пройдя через жидкость, рассеянный ею свет попадает на фотоумножитель, где преобразуется в напряжение, пропорциональное измеряемому расходу жидкости.
Электромагнитные преобразователи представляют собой один или несколько контуров, по которым могут протекать электрические токи, находящиеся в магнитном поле.
Электромагнитные преобразователи характеризуются такими параметрами как величина и направление токов, протекающих через контур, потокосцепление и индуктивность. Выходной величиной для таких преобразователей могут быть индуктивность, электромагнитная сила и индуктируемая в контуре ЭДС.
Рис. 1. Схемы электромагнитных преобразователей
Рис. 1а – принципиальная схема индуктивного преобразователя с ферромагнитным сердечником. Индуктивность L зависит от положения сердечника, что и является входной величиной датчика. Преобразователи, выходная величина которых зависит от внешнего магнитного поля, называются магнитомодуляционными.
Рис. 1б - принципиальная схема магнитоупругого преобразователя. Под действием приложенной силы происходит деформация ферромагнитного сердечника, в результате чего изменяется его магнитная проницаемость. Такие преобразователи часто используются для измерения сил и давлений.