- Блок силовой.
- Внешние датчики
Блок силовой это совокупность исполнительных устройств, получающих команды от контроллера и управляющих насосом водоподъемной станции и другими силовыми элементами.
Внешние датчики:
• Датчик минимума-максимума (манометр)
• Датчик «сухого хода» (манометр)
• Дополнительно могут быть установлены датчики температуры, датчики охраны помещения и.т.п.
4. Возможности.
Режимы управления
• Автоматический
• Ручной
В автоматическом режиме, система контролирует все параметры и отрабатывает полный цикл, без вмешательства человека. Все действия и неисправности (аварийные ситуации) отображаются на жидкокристаллическом дисплее, который находится на передней панели устройства. Все данные отображаются с привязкой по времени. При использовании централизованного контроля и управления, все действия и неисправности транслируются в диспетчерский пункт и отображаются на экране персонального компьютера. Связь с компьютером может быть как проводная, так и беспроводная Wi Fi. По одной паре проводов, последовательно может быть подключено до 255 устройств.
В ручном режиме все операции производятся с помощью органов управления, находящихся на передней панели.
По желанию система может комплектоваться устройством плавного пуска двигателя, что значительно увеличивает срок службы насоса.
2.2 Математическое описание ОУ
На станции 3-го подъёма необходимо регулировать выходное давление. Оно не должно превышать и падать , вследствии неравномерного расхода воды во времени ,ниже заданной величины.
Поэтому необходимо рассмотреть контур регулирования скорости двигателя в зависимости от выходного давления. Спроектированная система автоматического регулирования давления может быть представлена структурной схемой, изображенной на следующем рисунке.
Рис. Структурная схема
iзад –сигнал задания давления;
P –давление в трубопроводе;
iдд –сигнал обратной связи с датчика давления;
Di – отклонение текущего значения от заданного;
uk – сигнал управления по напряжению на преобразователь частоты;
Kпч-д – коэффициент передачи преобразователя частоты-двигателя;
Tм – постоянная времени преобразователя частоты-двигателя;
w – скорость двигателя насоса;
Kн – коэффициент передачи насоса;
Tн – постоянная времени насоса;
Kдд – коэффициент передачи датчика давления.
KВ – коэффициент передачи возмущающего воздействия.
Каждый элемент системы представляет собой апериодическое звено.
Рассмотрим каждое звено отдельно:
1. Преобразователь частоты-двигатель:
=0.01 ввиду большой скорости срабатывания
2. Насос. Преобразует циклическую частоту двигателя в давление
=1 – время разгона насоса
3. Датчик давления. Преобразует давление в токовый сигнал.
4. Возмущающее воздействие.
Рассчитав перечисленные выше параметры звеньев структурной схемы, проведем моделирование в специализированном программном пакете визуального моделирования MatLab Simulink.
Моделирование системы управления без регулятора и возмущающих воздействий в среде Simulink
Далее проведём моделирование с внешним возмущающим воздействием при помощи открытия отсечного клапана.
Моделирование системы управления c возмущающим воздействием в среде Simulink
В момент открытия клапана происходит резкое падение давления, а затем система выходит на новое устойчивое состояние с меньшим значением давления.
Последним этапом является моделирование системы управления с регулятором давления, который должен компенсировать возмущающее воздействие.
Объединяет два регулятора П и И, , обладает наилучшими свойствами, а именно: за счет П - составляющей улучшается показательные качества в переходном процессе, а за счет И - составляющей уменьшается ошибка регулирования ® т.е. улучшается точность.
В качестве критерия качества регулирования принимаем желаемую передаточную функцию разомкнутого контура. Для рассматриваемой системы регулирования целесообразно применять настройки контура регулирования на технический оптимум. Желаемую передаточную функцию разомкнутого контура в этом случае записывают в виде:
Передаточная функция оптимального регулятора определяется в виде:
где Wоу (p) – передаточная функция объекта регулирования, Wос (p) – передаточная функция звена обратной связи, Wр.жел (p) – желаемая передаточная функция разомкнутого контура.
В результате синтеза была получена передаточная функция ПИ-регулятора. В общем виде передаточная функция ПИ-регулятора выглядит следующим образом:
,
где KП – коэффициент пропорциональной части, КИ – коэффициент интегрирующей части, которые необходимо вычислить для построения регулятора в реальной системе регулирования давления.
Промоделируем систему с ПИ регулятором и возмущающими воздействиями.
Моделирование системы управления c возмущающими воздействиями и ПИ-регулятором в Simulink
По полученным результатам можно судить, что система быстро отрабатывает возмущение и возвращается в исходное устойчивое состояние с заданными показателями качества, поэтому синтез ПИ - регулятора проведён верно.
Наиболее экономичным является такой режим работы насосов, когда при изменяющемся разборе развиваемый насосами напор соответствовал бы минимально необходимому значению и не превышал его. Этого можно добиться путем автоматического изменения частоты вращения электродвигателей насосов с помощью частотно-регулируемых приводов (ЧРП).
Таким образом, основной целью создания автоматизированной системы управления стало:
· автоматическое поддержание заданного давления воды в коллекторе;
· создание наиболее экономичного режима работы насосов с помощью ЧРП;
· оперативный диспетчерский контроль за параметрами процесса;
· выявление аварийных ситуаций и/или неисправностей технологического оборудования с выдачей аварийно-предупредительной сигнализации и с занесением в журнал событий.
· обработка аналоговой и дискретной информации по заданному алгоритму и формирование qнеобходимых сигналов для управления технологическим оборудованием;
· передача информации о текущем состоянии оборудования, о параметрах и состоянии технологического процесса на верхний уровень (при работе в составе АСУ ТП предприятия);
3.1 Описание синтезируемой системы
Три уровня, обеспечивающие функции оперативного контроля и управления – нижний, средний и верхний (рис. 2).
Рис. 2. Уровни АСУ ТП
· Нижний уровень АСУ ТП объекта автоматизации.
Основные компоненты:
· датчики;
· исполнительные механизмы.
Решаемые задачи:
преобразования физических параметров технологического объекта в унифицированные электрические сигналы.
преобразования унифицированных управляющих сигналов автоматизированной системы в механические и др. виды воздействий на течение технологического процесса.
· Средний уровень АСУ ТП объекта автоматизации.
Основные компоненты:
· модули устройства сопряжения с объектом;
· программируемый логический контроллер;
· программное обеспечение контроллера;
Решаемые задачи:
- сбор и обработка сигналов с датчиков;
- выявление отклонений технологических параметров процесса от регламентных значений;
- выдача сигналов для аварийной защиты и блокировки технологического оборудования при нарушении регламентных уставок;