После реакционных труб конвертированная парогазовая смесь проходит подъёмные трубы (9) и по коллектору (10) попадает в шахтный конвертор метана второй ступени (11). Здесь на никелевом катализаторе происходит кислородная конверсия остаточного метана. Температура конвертированного газа на выходе из реактора второй ступени достигает 990 – 1000 oC, остаточное содержание метана в конвертированном газе составляет 0,35 – 0,55 % (объёмн.).
После двухступенчатой конверсии метана, если водород предназначается для синтеза аммиака, в конвертированном газе кроме водорода (57%) и азота (22,4%) содержатся оксид углерода 13,4% и диоксид углерода 7,7% (объёмн.).
Оксид углерода далее превращается в водород и диоксид углерода в системе паровой конверсии. Паровая конверсия оксида углерода до водорода проводится в две ступени (схема 2). Первая ступень конверсии осуществляется при температуре 330 – 400 oС на железо-хромовом катализаторе, при этом на выходе из конвертора первой ступени (1) содержание оксида углерода в конвертированном газе падает до 3,3% (объёмн.), и с таким содержанием оксида углерода газ, пройдя через испаритель (2), вступает во вторую, низкотемпературную ступень конверсии. Здесь на низкотемпературном катализаторе конверсии, содержащем оксидные соединения меди, цинка, алюминия, хрома, при температуре 190-210 оС происходит доконверсия остаточного оксида углерода до его содержания на выходе из конвертора (3) 0,4 – 0,5 %. Далее газ поступает на очистку углерода различного рода поглотителями. Так в промышленных условиях получают чистый водород и азото-водородную смесь.
Получение водорода – будущая технология
Современная технология обеспечивает ежегодное получение во всём мире десятков миллионов тонн молекулярного водорода. Более 90% его получается каталитической конверсией метана, жидких углеводородов, газификацией твёрдого топлива. Совершенно ясно, что в будущем при переходе на водородную технологию такие источники получения водорода, кроме твёрдого топлива, будут в основном исключены. В качестве основного источника сырья будет использоваться вода. В качестве источника энергии для разложения воды – атомная энергия в различных её видах (тепло, электроэнергия) и энергия воды, ветра в виде электрической энергии, энергия солнечного излучения. Общая картина использования первичных источников энергии для получения водорода представлена на схеме 3.
При внимательном рассмотрении всего комплекса методов получения водорода видно, что если использование горючих ископаемых имеет прямой выход к водороду, то использование других первичных источников энергии в основном базируется на использовании электрической энергии для электролитического разложения воды, энергии Солнца в фотосинтетических системах для разложения воды и атомного тепла в термохимических системах для разложения воды. Электролиз воды проводится в промышленной практике давно и широко описан в литературе. Сейчас делаются значительные усилия в науке промышленности, чтобы использовать неисчерпаемую энергию солнечного излучения для разложения воды. Это и применение фотолизных ячеек для разложения воды, солнечных ячеек для получения электроэнергии с последующим её использованием при электролизе воды. Главная задача, которая здесь решается, заключается в том, чтобы провести под непосредственным воздействием солнечной энергии ряд фотохимических реакций с целевым назначением разложения воды до водорода кислорода. Суть проблемы заключается в том, чтобы подобрать такие биологические системы, которые будут использовать солнечную энергию для разложения воды.
Но наиболее в технологическом плане являются методы термохимического разложения воды. Эти методы важны тем, что для разложения воды они могут использовать и тепло атомных реакторов, солнечное тепло, и тепло геотермальных вод, и любые другие виды тепла, например перепад температур верхних и нижних слоёв тропических морей. Разрабатываются и комбинированные термохимические процессы, которые наряду с теплом используют электрическую энергию – термоэлектрохимические процессы, солнечное излучение, фото- и термохимические процессы. Термохимические процессы разложения воды привлекательны ещё и тем, что в результате целого ряда химических превращений, протекающих в термохимическом цикле (системе), из цикла в окружающее пространство ничего, кроме водорода и кислорода, не выделяется. Все химические процессы, сопровождающие разложение воды, находятся в закрытом циркуляционном контуре. В этот контур подводятся только вода и тепло (высокопотенциальное), от контура отводятся водород, кислород и тепло (низкопотенциальное).
Многоликий водород
Мы подняли лишь краешек занавеса сцен на которой действует один из интереснейших элементов нашей Вселенной – многоликий водород. Вплоть до XX в. Все были убеждены, что за «горючим воздухом» Кавендиша, гидрогениумом Лавуазье скрывается элемент, рождающий при своём соединении с кислородом обычную воду.
Но в XX в. Водород приобрёл многоликость. В природе были открыты три различных водорода, три его изотопа, которые были названы в соответствии со сложностью своих ядер. Самый лёгкий – протий. Водород в обычной воде в основном состоит из протия. Но в воде есть и более тяжёлый водород – дейтерий. На каждые 6700 атомов протия приходится один атом дейтерия.
Существует и сверхтяжёлый водород – тритий. Тритий радиоактивен. Он непрерывно образуется в стратосфере под действием космического излучения. Есть предположения, что это не предел для существования новых, ещё более тяжёлых изотопов водорода, которые должны быть радиоактивны.
Дейтерий – исходный элемент для энергии будущего. Впервые существование тяжёлого водорода – дейтерия было доказано в 1932 году. Несмотря на относительно малое содержание дейтерия в обычной воде, общее количество дейтерия на Земле очень велико. По подсчётам академика И. В. Курчатова, 1 литр обычной воды по энергии содержащегося в нём дейтерия эквивалентен примерно 400 л нефти, поэтому дейтерия кат топлива будущего хватит на сотни миллионов лет. (Вспомните ещё раз героя Жуля Верна).
Количество трития на Земле исчезающее мало. Его меньше 1 кг, но, несмотря на это, его можно обнаружить в каждой капле воды. А его значение в будущей энергетике, возможно, ещё более велико, чем дейтерия. Он неустойчив, период его полураспада – 12, 262 года.
Водород (протий), дейтерий и тритий образуют двухатомные молекулы. Молекулы с одинаковыми атомами Н2, D2, Т2 существуют в двух ядерно-изомерных формах, орто- и пара-форме. Эта изомерия является исходной причиной различия магнитных, спектральных и термических свойств обеих модификаций.
Мой рассказ о водороде и водородной технологии был бы неполным, если бы мы не указали на ещё один лик водорода – атомарный водород, победное шествие которого в технике предстоит. Дело в том, что атомарный водород более перспективное горючее, чем протий.
Р. Вуд в 1922 г. установил, что при пропускании тихих электрических разрядов через водород, находящийся под давлением в нескольких десятых долей миллиметра ртутного столба, можно получить атомарный водород. При 1700оС количество диссоциированного водорода (Н2 – 2Н) составляет доли процента, а при 4700оС оно доходит до 95%. Атомарный водород уже при комнатной температуре восстанавливает оксиды металлов, соединяется с кислородом, серой. Но главное, в чём заключается его ценность и что обеспечивает его будущее, - это огромная энергия, которая выделяется при рекомбинации атомов водорода в молекулу. Эта теплота используется при автогенной сварке особо тугоплавких металлов, например тантала с вольфрамом. Температура при такой сварке достигает 4000оС.
Высокая теплота рекомбинации атомов водорода в молекулу открывает возможность использовать атомарный водород в качестве особо высокого по калорийности топлива. Но атомарный водород очень неустойчив, он существует в течении десятых долей секунды, затем превращается в молекулярный водород. Создание условий, при которых можно было бы хранить атомарный водород, - задача ещё не решённая.
И наконец, ещё один лик водорода – протон (ядро атома водорода), широко используемый в современной науке для осуществления ядерных реакций.
Многолик водород, он широко и глубоко вторгается в современные энергетику транспорт, химическую технологию.
Сколько получают водорода и для каких целей?
Водород получают в газообразном виде и, если для использования необходим жидкий водород, его подвергают глубокому охлаждению и ожижению.
Производство молекулярного водорода в 1985 году достигло примерно 57 млн. тонн (без СССР), а в 1990 году уже 95. Если вспомнить, что водород это газ, который в 14,5 раза легче воздуха, то станет ясно, какой это громадный объем.
Где же в настоящее время используется такая масса водорода? Во-первых, в азотной промышленности, для получения синтетического аммиака. Во-вторых, для получения метанола из СО и Н2, Значительное количество водорода используется в нефтехимической промышленности для очистки нефти от сернистых соединений, для гидрирования тяжелых нефтяных фракций и повышения выхода легких фракций, в ряде нефтехимических синтезов, для гидрирования жиров, в металлургии для восстановления руд черных и цветных металлов, жидкий водород необходим в авиации и космонавтике, в ряде производств. В будущем потребление водорода будет расти более высокими темпами. Возникнет промышленность синтетического жидкого и газообразного топлива на базе твердых горючих ископаемых (гидрирование и гидрогазификация твердых топлив).