Смекни!
smekni.com

Кривошипно-ползунный механизм, его структура, схема, анализ (стр. 2 из 3)

В то же время точка В принадлежит и ползуну 3. Ползун 3 совершает только прямолинейное возвратно-поступательное движение вдоль направляющей XX, следовательно, линия действия вектора скорости точки В проходит параллельно XX:

. (11)

Разрешив графически векторные уравнения (9, 10, 11), построим план скоростей (рисунок 5).

Замерив для каждого плана скоростей длину векторов и с помощью масштабного коэффициента скоростей, найдем числовые значения по формулам

(12)

Так же рассчитаем угловые скорости для звеньев, совершающих вращательное движение:

(13)

Для упрощения расчетов построим таблицу (таблица 2), внося найденные значения по уравнениям (12) и (13) линейных и угловых скоростей, соответственно:

Таблица 2 – Линейные, угловые скорости положения механизма

Положение Линейные скорости (м/с) Угловые скорости (с-1)
1 29,3 29,3 11,1 22,7 9,77 36,63 8,53

Рисунок 5 – План скоростей


Для построения плана ускорений составим векторные уравнения. Вектор ускорения точки А представляет собой геометрическую сумму вектора ускорения точки О, вектора нормального ускорения и вектора тангенциального ускорения относительного вращательного движения точки А вокруг точки О:

(14)

В уравнении (17) первое слагаемое равно нулю (

), так как точка О является неподвижной, а третье слагаемое равно нулю, так как угловая скорость звена ОА постоянна (
). Тогда уравнение (14 примет следующий вид:

Модуль ускорения точки А:

(15)

Теперь подберем масштабный коэффициент ускорений:

(16)

где

- модуль ускорения точки А;
- произвольно выбранный отрезок, изображающий на плане ускорений вектор ускорения точки А. Примем
, тогда с учетом равенства (16)получим:

Длину отрезка, изображающего на плане ускорений вектор ускорения точки С, найдем, воспользовавшись теоремой подобия:

. (17)

Вектор ускорения точки В принадлежащей шатуну 2 представляет геометрическую сумму вектора ускорения точки А, вектора нормального ускорения и вектора тангенциального ускорения относительного вращательного движения точки В вокруг точки А:

(18)

Модуль вектора

найдем по выражению:

Длина отрезка, изображающего в составе плана ускорений вектор

:

(19)

В то же время точка В принадлежит и ползуну 3. Ползун 3 совершает только прямолинейное возвратно-поступательное движение вдоль направляющей ХХ, следовательно, линия действия вектора ускорения точки D проходит параллельно прямой ХХ:

Разрешив графически векторные уравнения (17,18,19), построим планы ускорений для всех найденных положений. После построения замерим для каждого плана длины отрезков

Используя найденные значения отрезков, определим модули соответствующих ускорений:

(20)

Так же, для расчетов, необходимо определить ускорения центров масс представленных звеньев. Центры масс шатунов 2, 4 и коромысла 3 считаем расположенными по середине этих звеньев. Соединив на планах ускорений точки

и a, а и b; и определив середины этих отрезков мы получим центры масс звеньев s1, s2. Проведя от точки
вектора к вышеуказанным точкам мы получим соответствующие вектора ускорений центров масс. Измеряя длину этих отрезков мы сможем определить модули этих отрезков:

(21)

Определим угловые ускорения звеньев:


(22)

Угловая скорость кривошипа 1 является постоянной величиной, следовательно, угловое ускорение этого звена равно нулю, т.е.

. Ползун 3 совершает только поступательные движения, следовательно, угловое ускорение этого звена тоже равно нулю, т.е.
.

Таблица 3 – Нормальные составляющие ускорений

Положение
м/с2
м/с2
1 1073 94,8 1076 752 753 827

Кинематический анализ успешно проведен.

Рисунок 6 – План ускорении

4. Определение сил, действующих на звенья механизма

На каждое звено плоского рычажного механизма действует сила тяжести, которая находится по формуле:


(23)

где g=9,81 м/с2 - ускорение свободного падения, а

- масса i-го звена.

Для определения массы каждого звена плоского рычажного механизма воспользуемся следующими формулами:

(24)

Далее определяем силы тяжести для каждого звена плоского рычажного механизма:

(25)

Также мы можем определить силы инерции, действующие на звенья плоского рычажного механизма, по формуле:

(26)

где

- масса i-го звена, а
- ускорение центра масс i-го звена.

Уславливаемся, что центр масс кривошипа лежит на оси его вращения, т.к в большинстве случаев кривошип – вал механизма, т.е

Также уславливаемся, что у линейных звеньев центр масс лежит на середине звена. Значения ускорений центра масс найдены в кинематическом анализе плоского рычажного механизма. Находим силы инерции:


(27)

Определяем моменты от сил инерции:

(28)

где

- момент инерции i-го звена, угловое ускорение i-го звена.

Момент инерции i-го звена:

(29)